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Abstract

We construct the generalized Darboux transformation with arbitrary functions
at time ¢ for the AKNS equation with self-consistent sources (AKNSESCS)
which, in contrast with the Darboux transformation for the AKNS equation,
provides a non-auto-Bicklund transformation between two AKNSESCSs with
different degrees of sources. The formula for N-times repeated generalized
Darboux transformation is proposed. By reduction the generalized Darboux
transformation with arbitrary functions at time # for the nonlinear Schrodinger
equation with self-consistent sources (NLSESCS) is obtained and enables us to
find the dark soliton, bright soliton and positon solutions for NLS*ESCS and
NLSTESCS. The properties of these solution are analysed.

PACS numbers: 02.30.Lk, 05.45.Yv

1. Introduction

The nonlinear Schrédinger equation with self-consistent sources (NLSESCS) describes the
soliton propagation in a medium with both resonant and nonresonant nonlinearities [1-4],
and it also describes the nonlinear interaction of high-frequency electrostatic waves with ion
acoustic waves in plasma [5]. Some soliton solution for the NLSESCS was obtained by
inverse scattering transformation in [1]. Since the explicit time part of the Lax representation
of the NLSESCS was not found, the method to solve the NLSESCS by inverse scattering
transformation in [1] was quite complicated.

Due to the important role played by the soliton equations with self-consistent sources
(SESCSs) in many fields of physics, such as hydrodynamics, solid state physics, plasma
physics, SESCSs have attracted some attention [6—16]. In recent years we have presented a
method to find the explicit time part of the Lax representation for SESCSs and to construct
generalized binary Darboux transformations with arbitrary functions at time ¢ for SESCSs
which, in contrast with the Darboux transformation for soliton equations [17, 18], offer a
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non-auto-Bicklund transformation between two SESCSs with different degrees of sources
and can be used to obtain N-soliton, positon and negaton solutions [19-21].

The positon solution for many soliton equations and their physical application have
been widely studied, for example, the positon solutions for KAV and mKdV equations were
investigated in [23, 24], for the nonlinear Schrédinger equation in [25], for the sine-Gordon
equation in [26]. However positon solutions for SESCSs except for the KdV equation with
self-consistent sources in [19, 20] have not been studied.

In this paper, we develop the method presented in [19, 20] to study the NLSESCS.
First we construct the generalized Darboux transformation with arbitrary functions at time ¢
for the AKNS equation with self-consistent sources (AKNSESCS) which offers a non-auto-
Bécklund transformation between two AKNSESCSs with different degrees of sources. Then
by reduction we obtained the generalized Darboux transformation with arbitrary functions at
time ¢ for the NLSESCS which also provides a non-auto-Bicklund transformation between
two NLSESCSs with different degrees of sources. Some interesting solutions of NLSESCS
such as dark soliton, bright soliton and positon solutions for NLS*ESCS and NLS~ESCS are
found. The properties of these solutions are analysed.

2. Binary Darboux transformations for the AKNS equation with self-consistent sources

The AKNSESCS is defined as [15, 16]

= —i(qu — 2 r)+Z DY =it —2qr2>+Z 2y’ 2.1a)
Jj=1 j=1
_ (4 P
Pjx = < . )\'j> Djs J = 1,...,n, (21]9)

where A ; are n distinct complex constants, ¢; = (fﬂjl)’ <p§2)) (hereafter, we use superscripts

(1) and (2) to denote the first and second elements of a two-dimensional vector respectively).
The Lax pair for equations (2.1) is given by [15, 16]

vy =U, U:=U,q,r)= (_r)L ;1\) , (2.2a)
v, =R™y, RV :=V+ Z H(% (2.2b)
where
1 2 e))
vimvian= (0 S8 = (0
' ((pj ) @i ¥

2.1. Binary Darboux transformation with an arbitrary constant

It is known [16] that based on the Darboux transformation for the AKNS equation [22], the
AKNSESCS admits two elementary Darboux transformations 71, : (q,7, @1, ..., ¢y) —
(G,7, P15 ..., %y). Given two arbitrary complex numbers  and v, u # v, let f = f(u) and
g = g(v) be two solutions of (2.2) with A = p and A = v respectively, and define 7;[ f]:

A—pn+qf®@/2fm) —q/2>

v =Ty, h=T®, f)= ( —f@/FM 1
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G=-q:/2—nqg+q’ f@/2frM, F=2fP/fW,
7= Ti(Aj, e; =1 "

j m s s s 1y

Dlgl:
~ 1 _g(l)/g(Z)
=T T, =T (A =

Y 2, 2 =Th(A, g) (r/z r—v—rgh/2g®) )
g=-2g"/g?, F=r/2—vr—r’gV/2g?),
~_:T2()\j7g)(pj i=1,...n

@ /ﬁj —

Theorem 2.1. The linear system (2.2) is covariant with respect to (wrt) the two Darboux
transformations Ty, T, i.e., the new variables V¥, q, 7 and ¢; satisfy

~ ~

»=UY, U=U®4.7), (2.3a)

=

RO = |vORG P+ 7. (2.3b)

=
Il

We now construct a new Darboux transformation based on 77 and 7;. Our method is
similar to that for the KdV equation with self-consistent sources [20]. Define
W(f, =W, 1
WD i TV )
Z(IL — l)) A= 2()\ — [L) 2
where W(f, g) is the Wronskian W(f, g) := fg® — f@¢M We assume that we have

obtained (¥, 4,7, @1, .. ., @) satisfying (2.3) by applying 71 [ f1to (¥, ¢, 7, ¢1, . . ., ). Then
we derive two linearly independent solutions of (2.3) with A = u and in terms of f only.

First solution. Let f; = f1(u) be a solution of (2.2) with A = u, and W(f, f1) # O (i.e.,
f and f; are linearly independent). Then applying 7;[ f] to f} gives a solution of (2.3) with
A=W

o(f. 8= WS, 9uf),

~ W i B
fr=Tiw Hfi = % < 2q> '

Since W ( f, f1) is independent of both x and ¢, we assume W ( f, fi) = 1. Thus, we obtain the
first solution of (2.3):

~ 1 —q
Pz (3)

Second solution. Note that ¥{ () := f(A)/(A — w) is a solution of (2.2). Applying 7;[ f] to
Y gives a solution of (2.3):

FOMm)

U w L) (=
I/fl()t)=T1(k,f)1p]=< . >+ (f (). f( ))(261).

2Dy — )
Taking the limit, we find a second solution of (2.3) with A = u:

. : g f(l) U(fvf) —q
- (0 42 ()
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Let C be an arbitrary constant, then the linear combination of the above solutions

fom Foacq= (1)) S22 ()

f(l)
is also a solution of (2.3) with A = . Apply B[kl to (W/(h — 1), G, T @1 ..., Gn), Le0s
define ~
V= B(M)% =y - ﬁma(ﬁ V), (2.4a)
gz_%zq_ ci(f(l;?2f)’ ?Z%_“7_r2271z1 - Ciif(z)‘zf) (2:40)
9= M = / o(f,¢)), (2.40)

T YT Crei D

o~

then the new variables ¥/, G, 7, @; satisfy

e = U9, (2.5a)
¥ = R"Y, (2.5b)

where

U=UG.q.n  and RV =VG&GD+Y HG)/—1).
j=1

Proposition 2.1. Let f be a solution of (2.2) with . = w, and C be an arbitrary constant,
then yr, q,7 and @; given by (2.4) present a binary Darboux transformation with an arbitrary
constant for (2.2), and (q,7, @1, . .., @,) is a new solution of (2.1). Moreover, we have

g7 =qr —9;log[C + o (f. )].

2.2. Binary Darboux transformation with an arbitrary function of t

Substituting (2.4a) into the left-hand side of equation (2.5b), we have a polynomial of
[C+oa(f, HIT":

~ E B f

Vi = [vf CreG P f)o<f, ¢>]
o fi CSIW ) + W )]
=V C+o(f, f)"(f’ v) 2 — WIC +a(f, )]

LSS WIS fu) + W )]
2[C+o(f, NP
where L; are two-dimensional vector functions defined by the last equality. We can expect

that substituting (2.4) into the right-hand side of (2.5b) will also give a polynomial of
[C+o(f, f)]_l, but it will be more complicated. So we just write it as

2
=Y LjC+o(f. I,

Jj=0

3
Ry =Y "RjC+o(f. HI7,

Jj=0
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where R; are also two-dimensional vector functions dependent on ¥/, g, r, ¢; and f and their
derivatives wrt x. Since (2.5b) holds for any constant C, we have the following lemma.

Lemma 2.1. Assume that v, q,r and @; satisfy (2.2), and let [ be a solution of (2.2) with
A = W, then we have
LJZR], j=0,1,2, R3=0,
for all x and t.
We now replace the constant C with an arbitrary function of #, say c(¢). Since there is no

derivatives wrt ¢ in the expression of ﬁ("), if we replace C with c(¢) in the definition of (2.4),
we will have

3
RO =Y Rjle) +o (£ )17,
j=0

But we will not have @, = Z?:O Lilc@)+o(f, f )1~/ under this replacement. However, this
replacement will lead to a non-auto-Bicklund transformation.

Proposition 2.2. Let f be a solution of (2.2) with A = An41, and c(t) be an arbitrary function
of t. If we define

A
V=9 cOT0(f f)U(f, V), (2.6a)
(1)y2 (2)\2
Gog-— Fop_ U (2.6b)
c®)+o(f, f) c®)+o(f, f)
R ' .
gpl_goj C(t)+a(f’f)a(f7¢j)v ]—17---7’17 (26C)
and
ey
Pn+1 = m“(ﬁ ®;), (2.6d)
then the new variables r, G, 7, @1, . .., @pe1 Satisfy a new system
Ve =0, U=U(,g,7r), (2.7a)
n+l —
L _ _ o H(p;)
_ pn+l) (n+l) __ J
¥ = RV, R —V(k,q,r)+§k_kj, (2.7h)
and (g, 7, @1, - - ., @n+1) is a solution of (2.1) with n replaced by n + 1. Moreover, we have

gr = qr — 32 logle(t) + a (f, )].

Proof. Since no derivatives wrt  appear in equation (2.7a), it is covariant wrt the transformation
defined by (2.6). Substitution of (2.6a) into the left side of (2.7b) gives

o, g
V=5 [‘” c(r)+a(f,f>"(f"”)}_w’ co+o IV

_ f[W(ftf lﬁ) + W(fv I//t)] + fa(f9 I/f)[zc(l‘) + W(ft’ flL) + W(fv fl//-)]
2 = Me@) +o(f, ] 2[e() +o (f, HI?

c)fo(f.y)
e +o(f, P

2

Y Lile@) +o(f. 17 +

Jj=0
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i VDTSN

2
=Y Rilc@)+o(f, I Dol P

j=0
— R(”)lﬁ + H(@nﬂ) 1; _ R("H)Tﬁ.
2(h = An+1)
This completes the proof. O
Example of solution. We start from equations (2.1) with n = 0, and the initial solution
q = r = 0. Choose asolution of (2.2) withn = 0, g = r = Oas f = (e”1¥ 21, e‘l“z"’\f’)T,

then by proposition 2.2, we obtain a solution of (2.1) withn = 1:

e—z)\lx—m%z ezx1x+4iA§t
= V=,
q X + 4t +c(t) x + 4t +c(t)
NG e hix—2iAjr
1= : ax2ile |
x + 4t +c(t) et 1

where c(t) is an arbitrary function.

Remark. The binary Darboux transformation (2.6), in fact, provides a non-auto-Bicklund
transformation between the AKNS equation with sources of different degrees of freedom.
Since a function c(¢) is involved, we call it a binary Darboux transformation with an arbitrary
function of ¢. This transformation is dependent on two elements, c¢(¢) and f, so we just write
them together as a pair {c, f}.

2.3. Multi-times repeated binary Darboux transformation with arbitrary functions

It is evident that the binary Darboux transformation with an arbitrary function can be applied N
times, and we will obtain the N-times repeated binary Darboux transformtion with N arbitrary
functions. Let fi, f»,..., be a series of solutions of (2.2) with A = Ay, Ay, ..., and let
1, C2, ..., be a series of arbitrary functions of 7. Let [N], g[N], r[N], ¢;[N] and f;[N]
denote the N-times Darboux transformed variables.

We define some symmetric forms. Let ¢; and g;, j = 1,2, ... be a series of scalar and
two-dimensional vectors, u be a scalar, 1 be a two-dimensional vector, and o (g;, g;) and
o(gi, h) are defined. For N = 1,2, ..., we define five forms W, Wl(i) and Wz(i),i =1,2,
which are symmetric for the N pairs {c;, g;}, as follows:

Wo({c1, g1}, ..., {cn, gn}) = det A,

i A b
0) o
Wi (e gihs ... {en, gali h) = det (a(i) RO =1, 2’>
, A (@T
M) L
W, ({c1, g1}, -+, {ens gn ) u) = det (a([) v =12,
where
A= e +0(g, g)nxns  b=(0(gi, h),....agn, )T,  aP=(g",...,g}).

For convenience, we define
WV (et gids - ens ga ks h))

W1<{Cug1}~-.,{cN,gN};m=( @
W7 (cr, g1}, ... {ev. gn ) )
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Lemma 2.2. Let Fi[j] = {c;, fil[j1},i,j=1,2,...,thenforl,k =1,2,..., we have

Wo(Fill =11, ..., Fiull — 1
Wo(Fralll, ..., Falll) = oAl Wo(]F[[l—ll])k[ D

Wi(Fill = 11,..., Full = 115 91 — 1])

Wi(Fialll, ..., Filll wll)) = , 2.8b

1(Fr (1] AR A1) N WolRT —1D) (2.8b)

Wy (Bl =11, ..., Frall — 11; gl — 11)
o Wo(Fill — 11)

Wy (Bl — 1], ..., Figll — 1] r[l = 1])

Wo(Fi[I —11)

(2.8a)

WD (Frall, ..., Frlll; qll]) = , (2.8¢)

WP (Fralll, ..., Frll]; r[1]) = : (2.84)

Proof. Leta;; = 8;jcii + o (fisill — 11, fiu ;1 —11), i, j = 1,2, .... Direct calculation yields

—1 - .o
dijcrei + o (f1willl, f14;[1]) = aij — aioayy aoj = aij, Lj=12,....
Note that
-1 -1
app aor - aok\ (1 —aggaor - —agy an ap O - 0
ap ap - ap 0 1 0 ayp ap - ap
agp gl v Gk 0 0 1 akp  ax1 cc Gk

Taking the determinant for both sides, we have
Wo(Fill =11, ..., Frall = 1) = Wo(F [l = 1D Wo(Fall], ..., Frll]),

which is just equation (2.8a). Similarly, we can prove (2.8b), (2.8¢) and (2.8d). O
Proposition 2.3. For N = 1,2,3, ..., we have
1
Y[N] = KWI({CI’ fit o fens Inh ), (2.9a)
1
gIN1= W3 den, fil - fews ki @), (2.9b)
1
rINT= W en fik oo fews fvkin), (2.90)
1
(pj[N]:ZWI({Clsfl}v-'-v{CNafN};(pj)s j:19'-~7n1 (29d)
iy
(pn+j[N]=gwl({clvfl}""5{CN7fN};fj)a j=17-"7N7 (2'96)
j
and
gIN1r[N1=gr — 9;log A 2.91)

where A = Wo({c1, fi}, ..., {cn, N ).
Proof. By the definition of /[ N] and lemma 2.2, we have

_ Wi{en, fnIN =115 ¢[N — 1))
VIN] =

Wol{en, fnIN — 11D
~ Wilen—1, fu—1[N =21} {en, fNIN =21} [N —2])
a Wollen—1, fy-1IN —21})
o Wol{en-1, fn-1IN —2]})
Wolen—1, fn—1[N =21}, {ew, fnIN —21H
__Wile, Ak, fens N1 )
 Wolen, fik oo {ews S

)
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which gives rise to equation (2.9a). Similarly, we can prove (2.9b), (2.9¢), (2.9d)
and (2.9¢). O

3. Binary Darboux transformations for the NLS equations with self-consistent sources

It is well known that from the ordinary AKNS equation

i = —i(qex — 24°r), re = i(re — 2qr7). 3.1
if we set r = eq*, ¢ = %1, then equations (3.1) are reduced to the ordinary NLS eqution

g =iQ2¢lq*q — ). (3.2)
We call the equation with ¢ = +1 the NLS* equation and the equation with ¢ = —1 the NLS™

equation.

Similarly, we can reduce the AKNSESCS into the NLS* equations with self-consistent
sources (NLST ESCS), but the reductions are more complicated since the sources need to be
reduced as well. First, we define two linear maps S, and S_ by

) 4,
Z z
St (Z<2)> — ( L ) (3.3)

For the reduced AKNS spectral problem, i.e., the NLS* spectral problem:

Ve =UR, q.q)Y (34
and the NLS™ spectral problem:
Y. =U(Q, q, _‘]*)1//, (3.5)

we have the following lemma.

Lemma 3.1. (1) If f is a solution of (3.4) with A = Ay, then S, f is a solution of (3.4) with
A = =A%, there exists a solution f of (3.4) with . = Ay satisfying f@ = fU* if and only if
Reix; = 0. (2) If f is a solution of (3.5) with . = Ay, then S_ f is a solution of (3.5) with
A = =M}, there exists no solution f of (3.5) satisfying f® = fW*if g # 0.

The NLSESCS are reduced from the AKNSESCS defined by

0ix =Uj,q. 19, go;-'sz()Jj-,q,r)w;, j=1,...,m, (3.6a)
dix=U(.q,1)¢;, j=1,...,n, (3.6b)
—i(gex — 2¢°%r) + Z[ (l) (1) ] + Z (l) (3.6¢)
j=1 j=1
re= (e — 2q7%) + Z[ @) 4 (9, @y ] Z @y (3.6d)
where Ay, ..., Ay, )Jl, ce ML, Gy are 2n + m distinct constants. The corresponding
Lax pair is
H(gp H(p)) "\ H(¢;)
Ve =UQO, g, 7)Y, Y =VQ0.q, r>w+Z ey
Py s
3.7

(1) Reductions to the NLSTESCS. Let

r=q", My=-), ¢,==£S9; j=1,...,m, (3.8a)
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Ret; =0, ¢ =V =w; j=1....n (3.8b)
then equations (3.6) are reduced to the NLS*ESCS

0ix=URj,q,9%9;, j=1,...,m, (3.9a)

wj,x:gwj+qw;f, (Reg; =0, j=1,...,n, (3.90)

4 =i2lqPq - q”>+Z[ D) (o) ]+ Zwk (3.90)

And system (3.7) is reduced to the Lax pair for the NLS*ESCS
1//)( = U()"v Qs q*)l/fv

H(p) H(S:p)) H((wj, w)")
V(x N+ + . 3.10
v = <qq>w2[ y “A*V’ZAQ"’ (3.10)
(2) Reductions to the NLS™ESCS. Take n = 0 in (3.6) and let
r=—q*, )»;-:—)»jf, (p}::tiS,goj, j=1,...,m, (3.11)
then equations (3.6) with n = 0 are reduced to the NLSTESCS
9jx=U@j q. =49, j=1....m (3.12a)
)2
4 =i(=2lqq — qu) + Z[ M) = (@] (3.12b)
Correspondingly, system (3.7) with n = 0 is reduced to the Lax pair for the NLS™ SCS
. . H(pj) H(S-¢))
Ve =UOuq.—g, ¥ =V0.q, —¢"V +Z [ 2L S } v, (3.13)
Aj J

We now reduce the Darboux transformations for the AKNSESCS to the NLSESCS. It is
easy to verify the following statements.

Lemma 3.2.

(1) Let f and g be two solutions of the NLS* spectral problem ¥, = U (A, q, ¢*)¥ with
A = u, v respectively, and let C be a complex constant wrt x, then we have

o(f. $+8)" =0 (S+f. &), o(S:f, S+8)" =0 ([, &),
o(f. Sef) =08 f, ). o(Safs S ) =0 (f, )
Wo({C, f1.{C", So fH" = Wo({C, f1{C", S, f)),

Wi({C, f1ACT, S+ f): S+9)" = S Wi ({C, f1,{C™, Si f}i 9,

W2 ((C, £1AC*, Sof): 00 = WiV (C, £),{C*, S, f); 0).
Moreover, if g satisfies g = g™ (= Rev = 0), then
W2 UC, F1ACH, Sof) )" = WUC, f1AC*, Sif); 9)-
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(2) Let f and g be two solutions of the NLS™ spectral problem v, = U (X, q, —q™)¥ with
A = W, v respectively, and let C be a complex constant wrt x, then we have

o(f.5-8)" =0(5-1.8), o(S-f.85-8)" =—0o(f. 8,
o(f,S-f) =0o(S-f. ), o(S_f.S- )" =—o(f. f).
Wo({C, fHA=CT, S_fD" = Wo({C, f1{=C", S_f}),

Wi{C, f1{=C", 5. f) S—9)" = S-Wi({C, f1.{=C", S_f} g,

W2 ((C, f1A=C* S_f1 00 = —WiP ({C, f1, {—=C*, S_f); 0).

Using this lemma, we can reduce binary Darboux transformations for the AKNSESCS to
binary Darboux transformations for the NLSESCS.

(1) Darboux transformations for the NLS*ESCS. The binary Darboux transformation (2.6) for
the AKNSSCS is reduced to a binary Darboux transformation with an arbitrary function for
the NLSTESCS as follows:

Proposition 3.1. Given a solution (q, ¢1, ..., Pm, W1, ..., Wy,) of the NLSTESCS (3.9), let
c(t) be a real function satisfying c(t) = 0, and let f be a solution of the linear system (3.10)
with A = Cns1, Re Cp = 0 and satisfy fO = f@* Define

- f (f")?
V=v———————o(f,¥), Gg=9——————, (3.14a)
c)+o(f, f) c)+o(f, f)
_ f .
pi=¢p;— ——o(f,¢;), j=1,...,m, (3.14b)
! Toewy+o(f, f) !
f(l) T
W, =w; — —— o (f, (w;j, w?)"), j=1,...,n, (3.14¢)
T cw+a(f ) o
/D) £
Wpt1 = L, (3.14d)
ct)y+ao(f, f)
then the new variables , G, @1, ..., @n and wy, . . ., Wyy satisfy system (3.10) with n replaced
by n+ 1. Hence (q, P1, ..., Pn, W1, ..., Wpt1) IS a solution of the NLS*ESCS (3.9) with n
replaced by n + 1. Moreover, we have
1> = lgI* = 8 logle() + o (f, f)]. (3.15)

The twice repeated binary Darboux transformation for the AKNSESCS can be reduced
to a second binary Darboux transformation with an arbitrary function for the NLS*ESCS as
follows:

Proposition 3.2. Given a solution (q, @1, ..., Pm, W1, ..., W,) of the NLSTESCS (3.9), let
c(t) be an arbitrary complex function, and f be a solution of the linear system (3.10) with
A= dus1> Re Ay #£ 0. Let A = Wo({c, f}, {c*, S+ f}), and define

U= AT"Wie, fLAct, Sefh ¥, (3.16a)
g=q+A"" W', £ {c", S f);0), (3.16b)

@ = A'Wi({e, £ (¢, S f)i0)). j=1.....m (3.16¢)
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w; =AW (e, fh A, Sof s (wy, whD, j=1....n, (3.16d)
P = Ve(eA) T Wi({e, £ et Sof): 1) (3.16¢)
then the new variables U, G, @1, ..., Pms1 and Wi, ..., W, satisfy system (3.10) with m

replaced by m + 1. Hence (G, @1, ..., Qps1, W1, ..., Wy) IS a solution of the NLS*TESCS
(3.9) with m replaced by m + 1. Moreover, we have

1> = |g|* — 8} log A. (3.17)

If we repeat Darboux transformation (3.14) N times and Darboux transformation (3.16)
M times, then we have a general multi-times repeated Darboux transformation with N+M
arbitrary functions as follows:

Proposition 3.3. Given a solution (q, @1, ..., Pm, W1, ..., W,) of the NLSTESCS (3.9),
let f; be a solution of the linear system (3.10) with A = ,4j,Reu; = 0, and satisfy
f(l) = f(z)*,j = 1,...,N, and let g; be a solution of the linear system (3.10) with
k = Am+J, Re Ay # 0 J=1,...,M. Let cj(t) be an arbitrary real function satisfying
cj(t) 20,j=1,...,N, and let d‘-(t) be an arbitrary complex function, j = 1,..., M.
Let Fj = {Cj, fj}, Gj = {d, gj}, G, = {d;:, S+gj}, and A = W()(Fl, ey FN, Gl, Gll’ ey
Gu, Gy, and define

U =AT"Wi(Fy, ..., Fy,G1,G,,...,Guy, Gy ), (3.184a)
g=q+A "W (F,...,Fy,G1,G,...,Gy, Gy 0), (3.18b)
@j=A"'"Wi(Fi,...,Fy,G1, G}, ...,Gu, Gy 9)), J=1....m, (3.18¢)

¢m+j=\/Fj(ch)—‘Wl(Fl,...,FN,GI,G;,...,GM,G;V,;gj), j=1,...,M, (3.18d)
W =AW (F1, ... Fy. GGl ....Gy. Gy (wj,w)T), j=1.....n, (3.18¢)

Wpej = /d;j(d;A) "W\ (Fy, ..., Fy, G, Gl ... .Gy, Glys f), j=1,...,N, (3.18f)

then the new variables W, G, @1, . . ., @mep and Wi, . .., Wpen satisfy system (3.10) with m, n
replaced by m+ M, n+ N, respectively. Hence (g, 1, - .., @m+ps Wi, - - ., Wyen) IS a Solution
of the NLSTESCS (3.9) with m, n replaced by m + M, n + N. Moreover, we have

q1* =1qI* — 8} log A. (3.19)

(2) Darboux transformations for the NLS™ESCS. The binary Darboux transformation for the
AKNSESCS cannot be reduced to a Darboux transformation for the NLSTESCS. But the
two-times Darboux transformation for the AKNSESCS can be reduced to a binary Darboux
transformation with an arbitrary function for the NLSTESCS.

Proposition 3.4. Given a solution (q, ¢, . . ., o) of the NLSTESCS (3.12), let f be a solution
of the linear system (3.13) with A = Apyi1, Re Ay # 0. Let ¢(t) be an arbitrary complex
function, A = Wy({c, [}, {—c*, S_f}), and define

¥ = AT"Wie, f1 =" S_fh ), (3.20a)
g=q+A"W,"({c, [}, {=¢", S_f}; 0), (3.20b)
@; = A""Wi{c, f1.{=c* S_f} @), j=1....m (3.20¢)

Gur1 = Ve(eA) ' Wille, £, (—c* S_ ) ), (3.20d)
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then the new variables V, G, @1, ..., Bms1 Satisfy system (3.13) with m replaced by m + 1,
Moreover, we have
g1* = |q|* + 3} log A. (3.21)

Repeating the above Darboux transformation N times gives rise to a general N-times
repeated binary Darboux transformation with N arbitrary functions for the NLSTESCS.

Proposition 3.5. Given a solution (q, ¢1, . .., @) of the NLS™ equations with sources (3.12),
let f; be a solution of the linear system (3.13) with A = A4 j, Re A,y j #0, j=1,..., N. Let
¢j(t) be anarbitrary complex function, F; = {c;, f;}, Fj/ = {—c’;., S_fih,i=1...,N,A=
Wo (F1, Fi, ..., Fy, Fy), and define

U= AT"W(F), F, ..., Fy, Fi;; ¥), (3.22a)
Gg=q+AN""W(F,F|,..., Fy, F}:0), (3.22b)
@j = A'Wi(F), F|, ..., Fy, F\; ¢)), j=1,....m (3.22¢)
Bmj = /i (c; N "W (F1, F, ..., Fy, Fys fi), j=1,...,N (3.22d)

then the new variables ¥, G, @1, . .., Pms1 Satisfy system (3.13) with m replaced by m + N,
and hence (q, ¢1, . .., @men) is a solution of the NLS*ESCS (3.12) with m replaced by m + N .
Moreover, we have

g1* = |qI* + 3} log A. (3.23)

4. Solutions of the NLS equations with sources

This section is devoted to obtaining some examples of the solutions of the NLSESCS by
Darboux transformations and the analysis for these solutions. We use subscripts zz and z; to
indicate the real part and the imaginary part of a complex number z. For Vz = |z| e’ € C with
0 € (—m, 7], we define /z = /[z] €/2.

4.1. Solutions of the NLS*ESCS

We only consider the NLS*ESCS (3.9) with m = 0. We start from the NLS*ESCS (i.e.,
m=n=>0)

qr = 1(2lq1°q — ¢xx) @D
and its solution

q=pe, “.2)
where p € R, is a constant. We need to solve the linear system

Yo = U(h, pe®t, pe 20)y, Y = V(h, pe® pe )y (4.3)
The fundamental solution matrix for the linear system (4.4) is

0 ex(x+2ixt)+1p2t (kK + 1) eflc(x+2i)»t)+i,ozt
= ((K +1) o (142000 —ip?t —p oK (r+2iAn—ip?t ) ) 4.4

where k = «(A) satisfies k2 = A% + p2.
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4.1.1. Solutions of the NLS*ESCS withm = 0 andn = 1. The NLSTESCS with m = 0 and
n = 1 reads

Wy = lw; +qwy, (4.5a)

g =1Qlq1*q — qu) + wi. (4.5b)
where ¢ # 0 is a real constant. Let f be a solution of system (4.3) with A = i¢ and satisfy
f® = £@* and let c(t) be an arbitrary real function with ¢() > 0, then by proposition 3.3,
a solution to the equation is given by

2 Y
Zipzt_ ( 1(1)) Wy = c(t)fl(l) (46)

1=re ct)+o(f. f) YT volf f)

Moreover, we have
lq1* = p* — 82 loglc(t) + o (f, f)]. 4.7

For the two cases: p > |£| and p < |£|, formulae (4.6) will give two different classes of
solutions respectively: a dark one-soliton solution and a one-positon solution.

(1) Dark one-soliton solution and scattering property. We take p > |£| and let k1 = k(if).
We choose k = /A2 + p?, then k and v/ & A are analyticat A = i¢, and k; = 1/ p% — €2 > 0.
Taking into account that the equality p = +/k — Ak + A holds near A = i¢, we choose f as

relw JE—7/p (e = h et (=i e o
- 0 it - mek(ﬁzmyipzt - mekl(xfﬂif)fipzt :
=1 A
Then one finds that f® = f(* Calculation yields

PO 9afD] o
i — 1 e kl(x72111).
o(f /) 21f@ 8o f@ 2K,

Let ¢(t) = (2k;) "' pe?1 @) with g € R,, b € R being constants, then formulae (4.6) give a
dark one-soliton solution

. _ 2 4
2/(1(/(1 _ lg) eZK](x 20t)+2ip-t 1—e 4i6 625

_ o a2ipt _ 2ip?t
a=pre p(E@h 4 G2y T 4% PC (4.8a)
B alk; — il) 2k, ekl(x—2it)+K|(al+b)+ipzf 3 zﬁKl eE—if eipzl @55
W= P oaarh) 4 o2 (=200 ] 4o ’ :
where
1 £
E=Ki[x — C+a) — D], 6 = — arcsin —.
2 p
By formula (4.7), one obtains
2
K
lgI> = p* — 07 log(1 + &%) = p* — —1—, 4.9)
cosh” &

which shows that |g|> describes the propagation of a dark soliton on the constant
background p. The soliton is localized around & = 0, so the location of the soliton is
x(t) = (2€ + a)t + b. and the soliton velocity is 2¢ + a. If a = 0, then w; = 0, and ¢ defined
by (4.8) becomes a dark one-soliton solution [27] of the NLS* equation (4.1).

We fix a solution of system (4.3) as

it )
Vo(x, 15 A) = ( pe )e“““'). (4.10)

(k +2)e 't
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Then a solution of the NLS* spectral problem
e =U, q,9")Y (4.11)
with ¢ defined by (4.8) is given by
fo(fivo)  _ per’t acaing [ Vi = et
c+a(fi ) \k+nr)e Vi +ile
K 625 el((x+2i)\.1) \/Kl— P ‘

X
p(k—iﬁ)(1+ezf) Ve +il K+ A

= (p* +ilr — k1K) * plicy — il) et K2R
2L — 1) (1 +e%) \ —(k + A) (k) +i0) e~ ™! ’

Y=o —

4.12)

Based on formulae (4.8), we can analyse the asymptotic features of the dark one-soliton
solution. For fixed ¢, we have

2ip’t —

pe [1T+0(1)], X — —00,

q= ) L, (4.13)
p el =40 e2i0°1 1] 4 o(1)], X — +00,

w; — 0, X — Zo0. 4.14)

It is easy to see that ¢ belongs to the class of potentials satisfying the finite density boundary
condition [27]

g(x,t) = pe=O[1 +o(1)], x — o0, (4.15)

where a4 (¢) are real functions, and 8 = %(oe+(t) — a_(1)) is a real constant independent of 7.
We now define the scattering data for this class of potentials in a similar way to [23].

First, we define u = ge * @, then u satisfies the standard finite density boundary
condition

[1+o(1)], X — —00,
u(x,r) = P N (4.16)
peXP[1+o()], X — +00.
Next, we define transmission and reflection coefficients for the NLS* spectral system
—A u
. = ) 4.17
¢ (u A) ¢ (4.17)

For u = p, system (4.3) has two linearly independent solutions

b 1
(m) ot < - >e”7
1 Py

while for u = p e*#, system (4.11) has two linearly independent solutions

~1
o) (K”) ", o) <L> e,
K+A

where Q(B) = diag(e‘ﬁ, e ). We fix a Jost solution ¢ of system (4.11) by imposing the
asymptotic property

L
¢ = (Kf) e [1+o(1)], X = —o0, (4.18)

while the transmission and reflection coefficients a(A, ) and b(X, t) are determined by the
asymptotic estimate

¢ =a(r,t)Q(B) <K”) e +b(A,1)Q(B) (2) e, X — 400. (4.19)
K+A
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We can now calculate the scattering data for the dark one-soliton solution. In this case,
we have u = ¢ e P’ and B = m/2 — 26. Formula (4.12) implies the function v has the
asymptotic behaviour

ip’t .
v = ( pe - ) eK(x+21M)[1 +o(1)], X — —00, (4.20)

(k + 1) e

PRIl — Kk ( p(ic) — i€) e’

p2(h — ib) <K+xxx+qoe4f)e““m”n+oan, X = 400, (421)
- - 1

We now take the Jost solution

¢ = 0(—p°t)(k + 1) e My, (4.22)
then we have
pr+ilh —
¢ = %Q( /2 —20) <m) e*[1 +0(1)], X — +00, (4.23)
ip(h —1f)

which implies that

2 .
P+ UA — KK
M) = —————, b(r,t) =0. 4.24
a0 =T (%)) (4.24)

The dark one-soliton solution is a reflectionless potential.

(2) One-positon solution and super-reflectionless property. We take p < |£] and choose
Kk = (signi;)iy/—A2% — p2, then « is analytic at A = i and «(if) = ik;, where
ki = (sign€)/€% — p? is a real constant. Choose a periodic solution of system (4.3) with
A =1L as

1 P ek(x+2ikt)+ip2t _ (K + )‘.) e—K(x+2iM)+i,02t
f=|v (_1> . = (ic + 1) XA =g o 1 oo (e42in)—ip?t
=i

<,0 i(©+0%) _ i(ky +€) e—i((-)—pzz))

r=il
i(k; +€) el(®@—p71) 4 0 e—i(®+p%) (4.25)
where ® = k;(x — 2€¢t). One finds f@ = f* and
(F )2 = 20(k; + 0)[—ki 7" cos 20 +i(sin 20 — pe~')] X7,
o(f. ) =200y +0) [x =2 (kit™" +€) 1+ p(2k1£)~" cos 20)] .

Choose c(t) = 2(ky +£)(at +b) witha € R,, b € R being constants, which implies that
c(t) = 0. Then formulae (4.6) give a one-positon solution

. (1y2 20 — 2 1
= pez"’z’ _ f") _ ki€~ cos20 1(31? O —pl) 20 4.260)
ct)y+o(f, f) y + p(2k1£)~! cos20
. Je@) fO \/7\/1—k 1e® —iy/1+kie-1e™® cif't (4.26b)
e +o(f, f) 2 Y + (2k1£)~!p cos 20 ’ ’

where

y=x+[a—2(C+kie")]t +b.
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Formula (4.7) implies
1+ p%2+2p0 7 (k1y cos 20 — sin20)
[y + p(2ki£)~! cos 2012

lq1* = p* — 32 log[y + (2k10) ' p cos 20] = p* +
4.27)

When p = a = 0, we have k; = ¢ and w; = 0, and formulae (4.26) degenerate to a solution
of the NLS* equation (4.1)
e—2it(x—2¢1)
X —4Mi+b
which was given in [25].
A solution of the NLS* spectral problem (4.11) with the potential ¢ defined by (4.26) is

folfivo)  _ ( peip2t ) e (x+2iA1) _ ([P e© — i(k, +£) e~ 1©] el )

q= (4.28)

v=vo- c)+o(f, f)  \(k+r)e it li(ky +£) e© + p e 1©] e 0™

y eK(X+zi)\.[) P ei@ _ 1(k1 + Z) C_i@ o
40— 10 (ki + Oy + k1)~ pcos20] |itk; +£) e +pe™® Kk +i

Based on formulae (4.26) and (4.29), we can analyse the basic features of the one-positon
solution. Formulae (4.26) imply that for fixed + and x — =00, we have the asymptotic
estimate

ge 27 = p 4 [k € cos20 — i(sin20 — p Hx 1+ 0(x ], (4.30)

wie " = Ja/2(v1 = kit 1el® —iy/1+k T ®)x~[1+ 0], (4.31)

for all p € R,. However, the asymptotic behaviour of |g|? for p = 0 is different from that for
p > 0. Actually, for p = 0, we have

lgI* =x[1+0(x™H],

‘ . (429

while for p > 0, we have
lg)? = p* +2kipl ™ x " cos 201 + O(x 7 H]. (4.32)

Compared to the dark one-soliton solution, the one-positon solution converges to its
background slowly.

As a function of x, the potential ¢ and the source w; share the same first-order pole
x = xo(t), which is implicitly determined by the equation

2killxo + (a — 2€ — 2k1€7")t + b] = p cos(2kixg — 4k £1).

The uniqueness of the solution xy can easily be proved. Let yp(f) = xo(t) + (a — 20 —
2k7€7")1 + b, then y, satisfies

2kilyo = pcos(2ki[yo — (a — 2kie™")t — b]).

This equation implies that y,(¢) is a periodic function of 7 with period ¢ / (Zkf) We define
the velocity of a positon as the velocity of its pole. From this definition, the velocity of the
positon is

V() =v(t+T) =%(t) = [20+ 2k —a+ ()],

where T = 7 /(2k}), and the average speed of the positon is

1 T
7/0 v()dr = (20 + 2k —a).
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Figure 1. The one-positon solution of the NLS*ESCS (4.5) with £ = 5. The dataare p = 3,a = 2
and b = 1. The plots are taken at t+ = 0. The two upper graphs show the real and imaginary
parts of ¢ respectively while the two lower graphs show the modulus of ¢ and the real part of w;
respectively.

In figure 1, we plot a one-positon solution of the NLSTESCS (4.5).
We now calculate the scattering data for the one-positon solution (4.5). In this case,
u=gq e " and B = 0. Formula (4.29) implies the asymptotic behaviour of the function v
ip’t .
v = P ) ex @A 4 o1, x — Fo00.
(k +2)e 7!

We take the Jost solution as

¢ =0(=p’Nk+1)" e My,

then we have

1

Potentials with reflection coefficient » = 0 and transmission coefficient @ = 1 are called
superreflectionless or supertransparent potentials [23]. By this definition, the one-positon
solution is superreflectionless.

In [23], positons are defined as long-range analogues of solitons and slowly decreasing,
oscillating solutions of nonlinear integrable equations. If we stick to the property of slowly
decreasing, the potential ¢ defined by (4.26) should not be called a one-positon solution unless
p = 0. However, we see that other properties such as being the long-range analogue of a

L
¢ — <"+’\> e, x — Foo, a(r, 1) =1, b(r,t) =0.
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soliton and the super-reflectionless property are still valid. Thus it is reasonable to extend
the definition of positons as: long-range analogues of solitons, slowly converging, oscillating
solutions of nonlinear integrable equations. According to this extended definition, solution
(4.26) is a positon solution.

4.1.2. Solutions of the NLS* equation with sources with m = 0 and n = 2. The NLS*
equation with sources with m = 0 and n = 2 reads

wy = wy +qwi, Wa,y = ilhws + qwy, (4.33a)
g =1Qlq1*q — gx) + wi + w3, (4.33b)

where £ and £, are two distinct real constants. For j = 1, 2, let f; be a solution of system (4.4)
with A = if; and satisfy f j(l) =71 jgz)*’ and let c;(¢) be an arbitrary function with ¢;(z) > 0.
Then by proposition 3.3, a solution of equations (4.33a) is given by

s, 2001 VAV A" — @@ + o ) — (@) +o(fi )

1=re €10 +o (1, f)eaD) + 0 (far f2)) — 0 (frs o)
(4.34a)
Vel +o(fr, PV —a(fi, )]
w| = , (4.34b)
(cr1() +o(fi, f) (2@ + o (fa, f2) — o (f1, f2)?
Ve[ +o(fi, ALY —a(fi, )] (4340

P2Z O o o)) + o (for f2)) — o (1, )P
Moreover, we have
lg|* = p* — 87 log[(c1(t) + o (f1, )2 (t) + o (fa, £)) — o (fi, [)°]. (4.35)

For simplicity, we assume [£;| > [£;|. According to the three cases for p: (i) p > |¢;], ] =
1,2,(i) p < |€], j = 1,2 and (iii) [£;| > p > |£2], formulae (4.34) will give three classes of
solutions respectively: dark two-soliton solution, two-positon solution and one-soliton—one-
positon solution.

(1) Dark two-soliton solution. For j = 1,2, we take p > |{,|, and choose

\/KT)»/;O mex,u—zz,z)ﬁp?z
fi= |:‘1’ < 0 )}A_ig - (mekj(x—ﬂjt)—ipzt) ’
where
K = \/)sz and Kj = \/ﬁ
Let
cj(t) = %ez"’(a'"J’bf), 0, = %arcsin%, j=1,2,

where a; € R,, b; € R are constants, then one finds

U(fjs f]) — ZL eZKj(x—ZZ,t)’ ] =1,2,
Kj
p sin(6; — 6,) K1 (=261 (x=2651)

U(fl’f2)= EI—EZ
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Formulae (4.34) yield a dark two-soliton solution

o 28 psin(@1—6) £ +& &1+i(p?1—01)

1 —2K1(1+e D) oo ¢ 2 Jped !
in(6; 6 i(p%—

9= % eb1thr £ (1 +e¥2)  Jpeftiii=t)

«/ﬁeéﬁi(pzt*&) \/ﬁeéﬁi(pzt*@z) 0 e2in’t

sin(61 —0 —i

. 2%(1 +e) % efithr o1

= [P R L (l4e¥) R (4.36a)
1o eb2—i0 1

P 26, psin(1—6y) L&+
2’(2(1+e ) 65 ©

_ /—a1 P eipzl

4.36b
A . ( )

wi . .
eb2—ifh eb1—i6

2%(1 +e2) w ebith

1=t

i 52
/_azpelpt
Wy = —————

A , (4.36¢)

efl —if; eézfiez

where
szlcj[x—(2£j+aj)t—bj], j=1,2,

and

P 28 psin1=0,) &+
2Kl(1+e ) -G ©

psini—0) & +& P 25
LUE s (1+e*)

(2) Two-positon solutions and positon—positon interaction. For j = 1,2, we take p < |¢;],
and choose
1 [pe® —i(k; +¢€;)e e
fi=1|¥ “\n i0; —i0;7 a—ip?t |
-1 A=ie litk; +£;)e® +pe@ile™™
where

k= (signA)iv—22—p%  and  ©; =k;(x —2(;1),  k; = (signt;),/3 — p2.
Let

cj(t)y =20;(k; +€;)(a;t +b)), vi=x+[a; —2(¢; +k;¢;")]t + by, j=12,
where a; € R, b; € R are constants. Then one finds

cj()+a(fj, fi) =20;(k; + L)y + p2kjL;) " cos20;], i=12,

sin(®1 — @2)
0=t

ki — ko
by — 4

Formulae (4.34) give a two-positon solution

o(fi, 2)=np (1 + ) cos(O) + Oy) — [p? — (ki + £1) (ka + £2)]

2 2
oo pe s 2 VAo (fi, o) = 20a(ke + )T (fV) = 261Gy + €T (£2") 4370
40185 (ky +€1)(ky + £2)T1 T2 — o (f1, f2)? '
V210, hky + )] 285 (ky + £2)T5 £ — , @)
v, — arly (ki + 0)[2€: (k> + £2)T2 f o(fi, )15 ]’ 437b)

Ak + £1) (ks + €)1 Ty — o (f1, f2)?
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V20,05 (ky + ) [28(ky + 0T £ — o (1, f2) ]

4(ky +£1) (ko + €)1 T — o (f1, f)? > 4.37¢)

Wy =

where
Ty =y;+p2kit;) " cos20;, ji=1,2

Assume that 2¢; +2k2¢;" — ay # 23 +2k3¢;" — a,. Fixing y; and letting # — oo (which
implies y, — 00), we obtain the asymptotic estimate

kit7' cos20; —i(sin20; — pt;")
yi + 2k1£1) 1 pcos20,

V1= kit e —iy 1+ ko7 e
wy = V % : ] 1+ 0@ ], wy =0 ).

Y1+ (2](161)_1,0 cos 20,

2ipt

2P+ 0™ Y], (4.38q)

q=npe

(4.38b)
Conversely, if we fix y, and let t — 00, then we obtain
‘ kot; ' cos20, —i(sin20, — pb5 ') .
qg= per’t 22 2 =i 2=t ) N+ 0], (4.39q)
V2 + (2](252)_1,0 Ccos 2@2
J1—koty ' e® — i /1 + kot e7®
w = 0@ "), wy = |82 ’ ’ 711+ 0G )],
2 v + (k€)1 p cos 20,

(4.39D)

Thus we have proved that the two-positon solution decays into two positons asymptotically as
t — 00, and the collision of the two positons is completely insensitive. Even the additional
phase shifts in the collision of two dark solitons are absent here.

(3) One-soliton—one-positon solution and soliton—positon interaction. We let p satisty
€] < p < |£3], and choose

= [\y (m/pﬂ _ (mewzelzmp%) ep— (expztel) )
A=il,

0 Jier + it 2tin—ip’ e—ip?1=01)
where
1 0
K =22+ p2, K1 =\/,02—52, 91=§arcsin—l,
0
and choose
1 [0 —i(ky + £y) e 1®2] ™
f2 =W 1 = . ie _io —ipx |
— di=ie [i(ky + £2) €72 + pe™]e
where
K = (sign Im )\,) i\/ —AZ — /32, @2 = kz(x —_ 2€2l), k2 — (Sign 62) e% _ p2_
Let
c(r) = 2L eZKl(u]t+b1)’ & =[x — € +ay)t — by],
K1

o2 (t) = 20 (ka + £2) (aot + b2), yo=x+[a—2(6+ k36, ")t + b,
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where a; € R,,b; e R, j =1, 2, are constants. Then one finds

e1(1) + 0 (fil fi) = 50 X1 (14 ),
1

c(t) + 0 (fa, o) = 2L:(ka + €)[y2 + (2kala) ™' p cos 205],

D ekl(xfﬂlt)
o(fi, ) = Ve T
by — £,

Formulae (4.34) give a one-soliton—one-positon solution

2ip 2P eI TNAB — 205 (ky + £2) p > TIT, — p(2k) (1 + 1) A2
=e
1 P K| Y5 (ks + €5)(1 + €2, — e261 B2

[(k2 + £2) cos(0) — O3) — psin(0; + O7)].

(4.40a)

JPai20 (ks + €2) /D e TN, — ef1 AB] e
W) = pail _12( 2+ 42)/p 2 1 (4.40b)
LK Ly(ky + £7)(1 +62§1)F2 —e%1 B2

V2ay0 0k + ) [p (k1) " (1 +e¥1) A —  /peXi—ifi leir’t
w, = 24a (kr _21)[0( D ( A —/p ] (4.400)
LKy (ko + £5)(1 +€2‘§1)F2 —e%1 B2

where
I =y + p(2kats) " cos 205, A=pe® —i(ky + £) e,
B = 7 {g [(ky + £3) cos(0) — ©y) — psin(6; + Oy)].
Formula (4.35) implies that
lgI* = p* — 87 log [ pr; " €2 (ks + £2) (1 + ¥, — e B?]. (4.41)

It is easy to see that
ke — =200+ — ) —a) — @]t — by — by
Assume
2(52 +k§€;l — 21) —a; —ay > 0.
We now fix y», and let 1 — —oo (which implies §; — —o0), then we obtain the estimate

ka5 cos 20, —i(sin20,; — pt=) 201 4 0(e=261)], (4.42a)
Y2 + (2k2£2) p COS 2@2

a ,/1—k2z e —i\/1 +kyt;' e ©
wy = 0(e™), wy =

vs + (2kals) 1 p cos 20,

2ip? t

qg=npe

lpt [1+ O(e—Z\Sl\)]

(4.42b)
and
lq1* = p? — 82 log[ys + p(2kzls) ™" cos 2@,][1 + O (e 2F11)]. (4.42¢)
Let t — +00, then we obtain the estimate (for simplicity, we only give the estimate for |g|?)
lq1* = p* = 87 loglys + 81 + p(2k2t2) ™' €08 2(O2 + )][1 + O (2],
where

Ky 1 . 2k1ka (€18, — p?)
e — 8 =  arcsin ——————=
bl — £1) 2 p*(ly —£y)
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Figure 2. The one-soliton—one-positon solution of the NLSYESCS (4.33a) with £; = 1 and
lr = 2. The data are p = V2anda; = ay = b, = by = 1. The two graphs show the modulus of
g att = —15 (left) and ¢ = 15 (right) respectively.

If we fix &) and let+ — oo (which implies y» — £00), then we have the asymptotic estimate

gy 1+ e 26,42ip%t —1
q=p¢€ — m (& [1 + 0(t )], (443(1)
2./ R I
= ?f—le;, L+ 0], wy = 0. (4.43b)

Thus we have proved that the one-soliton—one-positon solution decays asymptotically into a
dark soliton and a positon for large ¢. The dark soliton recovers completely after the collision
with a positon, in other words, a positon is totally transparent to a dark soliton. However,
the positon gains phase shifts when colliding with the dark soliton. In figure 2, we plot the
one-soliton—one-positon solution.

4.1.3. Solutions of the NLS*ESCS withm = 0 andn = N. The NLSTESCS with m = 0 and
n = N reads

wj,xziﬁjwj+qwjf, j=1,...,N, (4.44a)
N
g =iQlglqg — g + Y w3, (4.44b)
j=1
where £; # 0,j = 1,..., N are N distinct real constants. For j = 1,..., N, let f; be a

solution of the system (4.4) with A = i¢; and satisfy f j(l) =f ],(2)*, and let ¢;(¢) be an arbitrary
real function satisfying ¢;(¢) > 0. Then by proposition 3.3, a solution of equations (4.44) is
given by

. A Jei() Ay
g=pedrt 4 =2 w,:M, j=1,...,N, (4.45)
Ay Ay
where
Ao = Wollers fids - {ens ), Ay =Wy (er, fidy oo lews fuks 0,

Ay = Wl(l)({Cl, fito oo {ejons fizah Aejsrs fiads oo {ens Sah i)
Moreover, we have
g1 = p* — 87 log Ao. (4.46)
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For simplicity, we assume [¢;| > --- > |€y]|. Then according to the different choice of p, we
can obtain different classes of solutions.

(1) Multi-soliton solutions. We take p > [£;], j =1, ..., N, and choose

Cj ([) = L QZK.f(ajH'bj)’
2Kj
[ — */p /Kj — iﬁj e/c,»(x72l,»t)+ip2t
7] _
f] [ ( 0 )]A_izj VK + igj ek,-(xlejt)fipzt

where

K =+/A2+ p2, sz,/pz—ez, aj € R, and b; e R,

then formulae (4.45) give the dark N-soliton solution.
(2) Multi-positon solutions. We take p < |€;], j =1, ..., N, and choose

Cj([) = Zﬁj(k] +E]~)(ajt+bj),

' _1 }\:izj [i(kj + E‘]) el®f + P e—l(’a/] e_lp t ]

K = (signIm L) iy/ =A% — p2, k; = (sign¢;) g? — 02,
a; € R+ and bj € R,

where

then formulae (4.45) give the N-positon solution.

(3) Multi-soliton—multi-positon solutions. We let p satisfy [{y,| > p > [€y,4+1], where
1 < Ny <N —1, and choose

VK — A
cj(t) = %ez“(“-”””), fi= [‘1’< ‘ 0 /p>] : J=1..., Ny,

Y =it
where
K =2+ p? and Kj=./p?— L2,
and
ci(t) =2L;(kj+£;)(a;t +b;), fj=|:\I/ (_11>i|k_1[/, j=Ni+1,...,N,
where

Kk = (signIm ) iy/—A2 — p2 and kj = (signt;),/ €3 = p?.

Here a; €e Ry and b; € Rfor j =1,..., N. Then formulae (4.45) give the N;-soliton—
N,-positon solution (N, = N — Nj).
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4.2. Solutions of the NLS™ESCS

We start from the NLS™ equation without sources

g = —i2lq1*q + qxx). (4.47)
and its solution
g =pe 2, (4.48)

We need to solve the linear system
Yo =U0, pe ™ —p® Ny, Yy =V, pe @ —ped )y (4.49)

The fundamental solution matrix for the linear system (4.49) is

+\ K (x+2iAr)—ipt _ — K (x+2irr)—ip>t
¢ = (K ):ix+2‘)hl)+‘ 2 he - ixH+p?t | (4.50)
—pe ) 1p°t (K + )L) e K (x+2irt)+ip“t
where k = «(A) satisfies k2 = 12 — p°.
4.2.1. Solutions of the NLS™ESCS withn = 1. The NLSTESCS with n = 1 reads
Plx = U()"ls q, _q*)(plv (451@)
. 2 2
a = —iQlqPq +q) + (21") = (91™)", (4.51b)

where | = Ajg +1i)j; is a complex constant with A1 > 0, A;; # 0. Let f be a solution of
system (4.49) with A = A, c¢(¢) be an arbitrary complex function, then by proposition 3.4, a
solution of equations (4.51) is given by

g=pe 42 g =2 A( ) ( o (4.52)
0 0 Al
where
ct)+o(f. f) _W”l&;lf””z s (IfOP+fOPN?
Ao = LFO s fO 2 . 'R . =—|ct)+o(f, /)" — )
T o —c®)* —o(f, f) AR
W24 @2 M2y O
A _ [Te® —a(f, ) — s o _ |—c)* —o(f, fr -
= — FO £ ’ = FOx £@ ’
ct)+o(f, f) —7“’(”5;';”2)'2 £
Az = | _ |f(l)f):\:(2)\2 —C(f)* _ O(f, f)* _f(2)* .
f(l) _f(z)* 0
Moreover, we have
lq|* = p* + 02 log Ag. (4.53)

Topological deformation of the bright one-soliton. We choose f as

—ip?
f= |:q> (1>i| _ (K1 +)~1)g e e;q(x+21)»1t)’
0 y —peirt
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where k| = k(11). Here, we choose k = k(1) = (signA;)/A2 — p? for ® defined by (4.50),
then « is analytic at A = X;. Furthermore, under this choice of «, we have lim, ,ox = A.

Calculation yields
p (K1 + A1) 261 (@ +2i01)

U(f’ f)= 2/(1

|f(2)|2 — ,02 e2(K1Rx—2A11f).

|f(l)|2 — |Kl +)\'l|2 eZ(Klefz)\”t)’

We choose ¢(t) = (2«1) ! (k1 + A1) €2@*?) where a and b are two arbitrary complex numbers,
then formulae (4.52) give the topological deformation of the bright one-soliton solution

M *2177 lic1 21 2 (1 +21) 217] + P(K|+)~|)( + i1 +21 P +0% _ ‘KH—M‘Z)CZE
2 K1

g=|p+ 2k, 2 Air . Kf 6721p2t
[k1+hi 2 /-2, 2 [ic1+ 1 [2+p2 2 ’
G § +2pcos2n + p? eé)+(W) e%
(4.54a)
e+ % o —E+in £—in p(k1+h *+p?) ob—in
al ) gl (et pettin — et |
oV = (k1 + 1) i e (454D)

A _ A1 1240212
"2,; 1 (€72 + 2p cos 21 + p2 %) + (Ltlrt) e

K1
M §+in 4 o ef—iny _ GHD(ethi40Y) g—in
) alkcit i) (™™ +pe) — 4ix it
(pl - |’(l+)hl| 2. b [k +1 2402 2 N € ) (454(,)
K1 et (e=% +2pcos2n + p? eé)+(T)eg

where

S:Kle—(2A11+aR)t—bR, n=K11x+(2A1R—a1)t—b1.
Formula (4.53) implies that
|q|2 = ,02 + Bf log [4)»%R|K] + A |2(e_2‘§ +2pcos2n+ p2 e2$) + |k |2(|K1 + A |2 + ,02)2 62&‘] .

When p = 0, we have x; = A, and the solution given by (4.54) corresponds to the bright
one-soliton solution

o 2ngedm _ 2akg (et
4= cosh?2&, ’ #1= cosh 2&, \ —ef~im |

where

&0 = Mpx — QAyg +ag)t — bp +log(|A1]/v/A1r), N0 = A1+ (QAig —ap)t — by +arg ;.

The topological deformation of the bright one-soliton solution for the NLS™ equation was
already known. Here, we have given its correspondence for the NLSTESCS.
In figure 3, we plot the topological deformation of the bright one-soliton solution.

4.2.2. Solutions of the NLS”ESCS withn = N. The NLSTESCS with n = N reads

(pszU()\j,q,—q*)(pj, j—l,...,N, (455(1)
* 2
= —iQlglg +ax0) + (01")" = (7)) (4.55b)
where A; = )LjR + iA;; are distinct complex constants with A;z > 0,1;; # 0. For

j=1,...,N,let

Kj+Aj cait+h;

Fj Z{Cj’fj}s F;:{—C?,S_fj}, Cj(l‘):

1 .
fi= [q’ (O>:| , Kj = (sign Ay /A5 — p2,
=y

J

2Kj
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Figure 3. The topological deformation of the bright one-soliton solution of the NLS™ESCS (4.51)
with A1 = 2 +1i. The data are p = V6and a; = ay = by = by = 1. The two graphs show the
modulus of ¢ (left) and the real part of ¢§1) (right) at t = 0.

then the topological deformation of the bright N-soliton solution of equations (4.55) is given
by

0 [€))]
_ —2ip?t A2 _ \/Cj(t) Alj .
qg=pe + —, (p]_ 5 N ]—1,...,N,
Ao Ay Ail.)
where
Ao = Wo(F1, F, ..., Fy, Fy), Ay =W\"(F\, F,..., Fy, Fy; 0),
A=W (R Fl. .. Fj F_\ F}. Fii, Fj,y..... Fy. Fy 7).

1=1,2,j=1,...,N.
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