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Abstract
We construct the generalized Darboux transformation with arbitrary functions
at time t for the AKNS equation with self-consistent sources (AKNSESCS)
which, in contrast with the Darboux transformation for the AKNS equation,
provides a non-auto-Bäcklund transformation between two AKNSESCSs with
different degrees of sources. The formula for N-times repeated generalized
Darboux transformation is proposed. By reduction the generalized Darboux
transformation with arbitrary functions at time t for the nonlinear Schrödinger
equation with self-consistent sources (NLSESCS) is obtained and enables us to
find the dark soliton, bright soliton and positon solutions for NLS+ESCS and
NLS−ESCS. The properties of these solution are analysed.

PACS numbers: 02.30.Lk, 05.45.Yv

1. Introduction

The nonlinear Schrödinger equation with self-consistent sources (NLSESCS) describes the
soliton propagation in a medium with both resonant and nonresonant nonlinearities [1–4],
and it also describes the nonlinear interaction of high-frequency electrostatic waves with ion
acoustic waves in plasma [5]. Some soliton solution for the NLSESCS was obtained by
inverse scattering transformation in [1]. Since the explicit time part of the Lax representation
of the NLSESCS was not found, the method to solve the NLSESCS by inverse scattering
transformation in [1] was quite complicated.

Due to the important role played by the soliton equations with self-consistent sources
(SESCSs) in many fields of physics, such as hydrodynamics, solid state physics, plasma
physics, SESCSs have attracted some attention [6–16]. In recent years we have presented a
method to find the explicit time part of the Lax representation for SESCSs and to construct
generalized binary Darboux transformations with arbitrary functions at time t for SESCSs
which, in contrast with the Darboux transformation for soliton equations [17, 18], offer a
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non-auto-Bäcklund transformation between two SESCSs with different degrees of sources
and can be used to obtain N-soliton, positon and negaton solutions [19–21].

The positon solution for many soliton equations and their physical application have
been widely studied, for example, the positon solutions for KdV and mKdV equations were
investigated in [23, 24], for the nonlinear Schrödinger equation in [25], for the sine-Gordon
equation in [26]. However positon solutions for SESCSs except for the KdV equation with
self-consistent sources in [19, 20] have not been studied.

In this paper, we develop the method presented in [19, 20] to study the NLSESCS.
First we construct the generalized Darboux transformation with arbitrary functions at time t
for the AKNS equation with self-consistent sources (AKNSESCS) which offers a non-auto-
Bäcklund transformation between two AKNSESCSs with different degrees of sources. Then
by reduction we obtained the generalized Darboux transformation with arbitrary functions at
time t for the NLSESCS which also provides a non-auto-Bäcklund transformation between
two NLSESCSs with different degrees of sources. Some interesting solutions of NLSESCS
such as dark soliton, bright soliton and positon solutions for NLS+ESCS and NLS−ESCS are
found. The properties of these solutions are analysed.

2. Binary Darboux transformations for the AKNS equation with self-consistent sources

The AKNSESCS is defined as [15, 16]

qt = −i(qxx − 2q2r) +
n∑

j=1

(
ϕ

(1)
j

)2
, rt = i(rxx − 2qr2) +

n∑
j=1

(
ϕ

(2)
j

)2
, (2.1a)

ϕj,x =
(−λj q

r λj

)
ϕj , j = 1, . . . , n, (2.1b)

where λj are n distinct complex constants, ϕj = (
ϕ

(1)
j , ϕ

(2)
j

)T
(hereafter, we use superscripts

(1) and (2) to denote the first and second elements of a two-dimensional vector respectively).
The Lax pair for equations (2.1) is given by [15, 16]

ψx = Uψ, U := U(λ, q, r) =
(−λ q

r λ

)
, (2.2a)

ψts = R(n)ψ, R(n) := V +
n∑

j=1

H(ϕj )

λ − λj

, (2.2b)

where

V := V (λ, q, r) = i

(−2λ2 + qr 2λq − qx

2λr + rx 2λ2 − qr

)
, H(ϕj ) = 1

2

−ϕ
(1)
j ϕ

(2)
j

(
ϕ

(1)
j

)2

−(
ϕ

(2)
j

)2
ϕ

(1)
j ϕ

(2)
j

 .

2.1. Binary Darboux transformation with an arbitrary constant

It is known [16] that based on the Darboux transformation for the AKNS equation [22], the
AKNSESCS admits two elementary Darboux transformations T 1,2 : (q, r, ϕ1, . . . , ϕn) �→
(̃q, r̃, ϕ̃1, . . . , ϕ̃n). Given two arbitrary complex numbers µ and ν, µ �= ν, let f = f (µ) and
g = g(ν) be two solutions of (2.2) with λ = µ and λ = ν respectively, and define T1[f ]:

ψ̃ = T1ψ, T1 = T1(λ, f ) =
(

λ − µ + qf (2)/(2f (1)) −q/2

−f (2)/f (1) 1

)
,
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q̃ = −qx/2 − µq + q2f (2)/(2f (1)), r̃ = 2f (2)/f (1),

ϕ̃j = T1(λj , f )ϕj√
λj − µ

, j = 1, . . . , n,

T2[g]:

ψ̃ = T2ψ, T2 = T2(λ, g) =
(

1 −g(1)/g(2)

r/2 λ − ν − rg(1)/(2g(2))

)
,

q̃ = −2g(1)/g(2), r̃ = rx/2 − νr − r2g(1)/(2g(2)),

ϕ̃j = T2(λj , g)ϕj√
λj − ν

, j = 1, . . . , n.

Theorem 2.1. The linear system (2.2) is covariant with respect to (wrt) the two Darboux
transformations T1, T2, i.e., the new variables ψ̃, q̃, r̃ and ϕ̃j satisfy

ψ̃x = Ũ ψ̃, Ũ = U(λ, q̃, r̃), (2.3a)

ψ̃ t = R̃(n)ψ̃ :=
V (s)(λ, q̃, r̃) +

n∑
j=1

H(̃ϕj )

λ − λj

 ψ̃. (2.3b)

We now construct a new Darboux transformation based on T1 and T2. Our method is
similar to that for the KdV equation with self-consistent sources [20]. Define

σ(f, g) := − W(f, g)

2(µ − ν)
, σ (f, f ) := lim

λ→µ

−W(f (λ), f (µ))

2(λ − µ)
= 1

2
W(f, ∂µf ),

where W(f, g) is the Wronskian W(f, g) := f (1)g(2) − f (2)g(1). We assume that we have
obtained (ψ̃, q̃, r̃, ϕ̃1, . . . , ϕ̃n) satisfying (2.3) by applyingT1[f ] to (ψ, q, r, ϕ1, . . . , ϕn). Then
we derive two linearly independent solutions of (2.3) with λ = µ and in terms of f only.

First solution. Let f1 = f1(µ) be a solution of (2.2) with λ = µ, and W(f, f1) �= 0 (i.e.,
f and f1 are linearly independent). Then applying T1[f ] to f1 gives a solution of (2.3) with
λ = µ:

f̃ 1 := T1(µ, f )f1 = W(f, f1)

2f (1)

(−q

2

)
.

Since W(f, f1) is independent of both x and t, we assume W(f, f1) ≡ 1. Thus, we obtain the
first solution of (2.3):

f̃ 1 = 1

2f (1)

(−q

2

)
.

Second solution. Note that ψ1(λ) := f (λ)/(λ − µ) is a solution of (2.2). Applying T1[f ] to
ψ1 gives a solution of (2.3):

ψ̃1(λ) = T1(λ, f )ψ1 =
(

f (1)(λ)

0

)
+

W(f (µ), f (λ))

2f (1)(µ)(λ − µ)

(−q

2

)
.

Taking the limit, we find a second solution of (2.3) with λ = µ:

f̃ := lim
λ→µ

ψ̃1(λ) =
(

f (1)

0

)
+

σ(f, f )

f (1)

(−q

2

)
.
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Let C be an arbitrary constant, then the linear combination of the above solutions

h̃ := f̃ + 2Cf̃ 1 =
(

f (1)

0

)
+

C + σ(f, f )

f (1)

(−q

2

)
is also a solution of (2.3) with λ = µ. Apply T2[̃h] to (ψ̃/(λ − µ), q̃, r̃, ϕ̃1, . . . , ϕ̃n), i.e.,
define

ψ̂ = T2(λ, h̃)
ψ̃

λ − µ
= ψ − f

C + σ(f, f )
σ (f,ψ), (2.4a)

q̂ = − h̃1

h̃2
= q − 2(f (1))2

C + σ(f, f )
, r̂ = r̃x

2
− µ̃r − r2h̃1

2̃h2
= r − (f (2))2

C + σ(f, f )
, (2.4b)

ϕ̂j = T2(λj , h̃)̃ϕj√
λj − µ

= ϕj − f

C + σ(f, f )
σ (f, ϕj ), (2.4c)

then the new variables ψ̂, q̂, r̂, ϕ̂j satisfy

ψ̂x = Û ψ̂, (2.5a)

ψ̂t = R̂(n)ψ̂, (2.5b)

where

Û = U(λ, q̂, r̂) and R̂(n) = V (λ, q̂, r̂) +
n∑

j=1

H(̂ϕj )/(λ − λj ).

Proposition 2.1. Let f be a solution of (2.2) with λ = µ, and C be an arbitrary constant,
then ψ̂, q̂, r̂ and ϕ̂j given by (2.4) present a binary Darboux transformation with an arbitrary
constant for (2.2), and (̂q, r̂, ϕ̂1, . . . , ϕ̂n) is a new solution of (2.1). Moreover, we have

q̂ r̂ = qr − ∂2
x log[C + σ(f, f )].

2.2. Binary Darboux transformation with an arbitrary function of t

Substituting (2.4a) into the left-hand side of equation (2.5b), we have a polynomial of
[C + σ(f, f )]−1:

ψ̂t = ∂

∂t

[
ψ − f

C + σ(f, f )
σ (f,ψ)

]
= ψt − ft

C + σ(f, f )
σ (f,ψ) − f [W(ft , ψ) + W(f,ψt )]

2(µ − λ)[C + σ(f, f )]

+
f σ(f, ψ)[W(ft , fµ) + W(f, ft,µ)]

2[C + σ(f, f )]2
=:

2∑
j=0

Lj [C + σ(f, f )]−j ,

where Lj are two-dimensional vector functions defined by the last equality. We can expect
that substituting (2.4) into the right-hand side of (2.5b) will also give a polynomial of
[C + σ(f, f )]−1, but it will be more complicated. So we just write it as

R̂(n)ψ̂ =
3∑

j=0

Rj [C + σ(f, f )]−j ,
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where Rj are also two-dimensional vector functions dependent on ψ, q, r, ϕj and f and their
derivatives wrt x. Since (2.5b) holds for any constant C, we have the following lemma.

Lemma 2.1. Assume that ψ, q, r and ϕj satisfy (2.2), and let f be a solution of (2.2) with
λ = µ, then we have

Lj = Rj , j = 0, 1, 2, R3 = 0,

for all x and t.

We now replace the constant C with an arbitrary function of t, say c(t). Since there is no
derivatives wrt t in the expression of R̂(n), if we replace C with c(t) in the definition of (2.4),
we will have

R̂(n)ψ̂ =
3∑

j=0

Rj [c(t) + σ(f, f )]−j .

But we will not have ψ̂t = ∑3
j=0 Lj [c(t) + σ(f, f )]−j under this replacement. However, this

replacement will lead to a non-auto-Bäcklund transformation.

Proposition 2.2. Let f be a solution of (2.2) with λ = λn+1, and c(t) be an arbitrary function
of t. If we define

ψ̄ = ψ − f

c(t) + σ(f, f )
σ (f,ψ), (2.6a)

q̄ = q − (f (1))2

c(t) + σ(f, f )
, r̄ = r − (f (2))2

c(t) + σ(f, f )
, (2.6b)

ϕ̄j = ϕj − f

c(t) + σ(f, f )
σ (f, ϕj ), j = 1, . . . , n, (2.6c)

and

ϕ̄n+1 =
√

ċ(t)f

c(t) + σ(f, f )
σ (f, ϕj ), (2.6d )

then the new variables ψ̄, q̄, r̄, ϕ̄1, . . . , ϕ̄n+1 satisfy a new system

ψ̄x = Ū ψ̄, Ū = U(λ, q̄, r̄), (2.7a)

ψ̄ t = R̄(n+1)ψ̄, R̄(n+1) = V (λ, q̄, r̄) +
n+1∑
j=1

H(ϕ̄j )

λ − λj

, (2.7b)

and (q̄, r̄, ϕ̄1, . . . , ϕ̄n+1) is a solution of (2.1) with n replaced by n + 1. Moreover, we have

q̄ r̄ = qr − ∂2
x log[c(t) + σ(f, f )].

Proof. Since no derivatives wrt t appear in equation (2.7a), it is covariant wrt the transformation
defined by (2.6). Substitution of (2.6a) into the left side of (2.7b) gives

ψ̄ t = ∂

∂t

[
ψ − f

c(t) + σ(f, f )
σ (f,ψ)

]
= ψt − ft

c(t) + σ(f, f )
σ (f,ψ)

− f [W(ft , ψ) + W(f,ψt )]

2(µ − λ)[c(t) + σ(f, f )]
+

f σ(f, ψ)[2ċ(t) + W(ft , fµ) + W(f, ft,µ)]

2[c(t) + σ(f, f )]2

=
2∑

j=0

Lj [c(t) + σ(f, f )]−j +
ċ(t)f σ (f,ψ)

[c(t) + σ(f, f )]2
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=
2∑

j=0

Rj [c(t) + σ(f, f )]−j +

√
ċ(t)σ (f, ψ)

c(t) + σ(f, f )
ϕ̄n+1

= R̄(n)ψ̄ +
H(ϕ̄n+1)

2(λ − λn+1)
ψ̄ = R̄(n+1)ψ̄ .

This completes the proof. �

Example of solution. We start from equations (2.1) with n = 0, and the initial solution
q = r = 0. Choose a solution of (2.2) with n = 0, q = r = 0 as f = (

e−λ1x−2iλ2
1t , eλ1x+2iλ2

1t
)T

,
then by proposition 2.2, we obtain a solution of (2.1) with n = 1:

q = − e−2λ1x−4iλ2
1t

x + 4iλ1t + c(t)
, r = − e2λ1x+4iλ2

1t

x + 4iλ1t + c(t)
,

ϕ1 =
√

ċ(t)

x + 4iλ1t + c(t)

(
e−λ1x−2iλ2

1t

eλ1x+2iλ2
1t

)
,

where c(t) is an arbitrary function.

Remark. The binary Darboux transformation (2.6), in fact, provides a non-auto-Bäcklund
transformation between the AKNS equation with sources of different degrees of freedom.
Since a function c(t) is involved, we call it a binary Darboux transformation with an arbitrary
function of t. This transformation is dependent on two elements, c(t) and f , so we just write
them together as a pair {c, f }.

2.3. Multi-times repeated binary Darboux transformation with arbitrary functions

It is evident that the binary Darboux transformation with an arbitrary function can be applied N
times, and we will obtain the N-times repeated binary Darboux transformtion with N arbitrary
functions. Let f1, f2, . . . , be a series of solutions of (2.2) with λ = λ1, λ2, . . . , and let
c1, c2, . . . , be a series of arbitrary functions of t. Let ψ[N ], q[N ], r[N ], ϕj [N ] and fj [N ]
denote the N-times Darboux transformed variables.

We define some symmetric forms. Let cj and gj , j = 1, 2, . . . be a series of scalar and
two-dimensional vectors, u be a scalar, h be a two-dimensional vector, and σ(gi, gj ) and
σ(gi, h) are defined. For N = 1, 2, . . . , we define five forms W0,W

(i)
1 and W

(i)
2 , i = 1, 2,

which are symmetric for the N pairs {cj , gj }, as follows:

W0({c1, g1}, . . . , {cN, gN }) = det A,

W
(i)
1 ({c1, g1}, . . . , {cN, gN };h) = det

(
A b

α(i) h(i), i = 1, 2,

)
W

(i)
2 ({c1, g1}, . . . , {cN, gN }; u) = det

(
A (α(i))T

α(i) u, i = 1, 2,

)
where

A = (δij ci + σ(gi, gj ))N×N, b = (σ (g1, h), . . . , σ (gN, h))T , α(i) = (
g

(i)
1 , . . . , g

(i)
N

)
.

For convenience, we define

W1({c1, g1}, . . . , {cN, gN };h) =
(

W
(1)
1 ({c1, g1}, . . . , {cN, gN };h)

W
(2)
1 ({c1, g1}, . . . , {cN, gN };h)

)
.
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Lemma 2.2. Let Fi[j ] = {ci, fi[j ]}, i, j = 1, 2, . . . , then for l, k = 1, 2, . . . , we have

W0(Fl+1[l], . . . , Fl+k[l]) = W0(Fl[l − 1], . . . , Fl+k[l − 1])

W0(Fl[l − 1])
(2.8a)

W1(Fl+1[l], . . . , Fl+k[l];ψ[l]) = W1(Fl[l − 1], . . . , Fl+k[l − 1];ψ[l − 1])

W0(Fl[l − 1])
, (2.8b)

W
(1)
2 (Fl+1[l], . . . , Fl+k[l]; q[l]) = W

(1)
2 (Fl[l − 1], . . . , Fl+k[l − 1]; q[l − 1])

W0(Fl[l − 1])
, (2.8c)

W
(2)
2 (Fl+1[l], . . . , Fl+k[l]; r[l]) = W

(2)
2 (Fl[l − 1], . . . , Fl+k[l − 1]; r[l − 1])

W0(Fl[l − 1])
, (2.8d )

Proof. Let aij = δij cl+i + σ(fl+i[l − 1], fl+j [l − 1]), i, j = 1, 2, . . .. Direct calculation yields

δij cl+i + σ(fl+i[l], fl+j [l]) = aij − ai0a
−1
00 a0j ≡ āij , i, j = 1, 2, . . . .

Note that
a00 a01 · · · a0k

a10 a11 · · · a1k

...
...

. . .
...

ak0 ak1 · · · akk




1 −a−1
00 a01 · · · −a−1

00 a0k

0 1 · · · 0
...

...
. . .

...

0 0 · · · 1

 =


a00 0 · · · 0
a10 ā11 · · · ā1k

...
...

. . .
...

ak0 āk1 · · · ākk

 .

Taking the determinant for both sides, we have

W0(Fl[l − 1], . . . , Fl+k[l − 1])) = W0(Fl[l − 1])W0(Fl+1[l], . . . , Fl+k[l]),

which is just equation (2.8a). Similarly, we can prove (2.8b), (2.8c) and (2.8d ). �
Proposition 2.3. For N = 1, 2, 3, . . . , we have

ψ[N ] = 1

	
W1({c1, f1}, . . . , {cN, fN };ψ), (2.9a)

q[N ] = 1

	
W

(1)
2 ({c1, f1}, . . . , {cN, fN }; q), (2.9b)

r[N ] = 1

	
W

(2)
2 ({c1, f1}, . . . , {cN, fN }; r), (2.9c)

ϕj [N ] = 1

	
W1({c1, f1}, . . . , {cN, fN };ϕj ), j = 1, . . . , n, (2.9d )

ϕn+j [N ] =
√

ċj

cj	
W1({c1, f1}, . . . , {cN, fN }; fj ), j = 1, . . . , N, (2.9e)

and

q[N ]r[N ] = qr − ∂2
x log 	 (2.9 f )

where 	 = W0({c1, f1}, . . . , {cN, fN }).
Proof. By the definition of ψ[N ] and lemma 2.2, we have

ψ[N ] = W1({cN, fN [N − 1]};ψ[N − 1])

W0({cN, fN [N − 1]})

= W1({cN−1, fN−1[N − 2]}, {cN, fN [N − 2]};ψ[N − 2])

W0({cN−1, fN−1[N − 2]})

× W0({cN−1, fN−1[N − 2]})
W0({cN−1, fN−1[N − 2]}, {cN, fN [N − 2]})

= · · · = W1({c1, f1}, . . . , {cN, fN };ψ)

W0({c1, f1}, . . . , {cN, fN }) ,
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which gives rise to equation (2.9a). Similarly, we can prove (2.9b), (2.9c), (2.9d )
and (2.9e). �

3. Binary Darboux transformations for the NLS equations with self-consistent sources

It is well known that from the ordinary AKNS equation

qt = −i(qxx − 2q2r), rt = i(rxx − 2qr2). (3.1)

if we set r = εq∗, ε = ±1, then equations (3.1) are reduced to the ordinary NLS eqution

qt = i(2ε|q|2q − qxx). (3.2)

We call the equation with ε = +1 the NLS+ equation and the equation with ε = −1 the NLS−

equation.
Similarly, we can reduce the AKNSESCS into the NLS± equations with self-consistent

sources (NLS± ESCS), but the reductions are more complicated since the sources need to be
reduced as well. First, we define two linear maps S+ and S− by

S± :

(
z(1)

z(2)

)
�→

(±z(2)∗

z(1)∗

)
. (3.3)

For the reduced AKNS spectral problem, i.e., the NLS+ spectral problem:

ψx = U(λ, q, q∗)ψ (3.4)

and the NLS− spectral problem:

ψx = U(λ, q,−q∗)ψ, (3.5)

we have the following lemma.

Lemma 3.1. (1) If f is a solution of (3.4) with λ = λ1, then S+f is a solution of (3.4) with
λ = −λ∗

1; there exists a solution f of (3.4) with λ = λ1 satisfying f (2) = f (1)∗ if and only if
Re λ1 = 0. (2) If f is a solution of (3.5) with λ = λ1, then S−f is a solution of (3.5) with
λ = −λ∗

1; there exists no solution f of (3.5) satisfying f (2) = f (1)∗ if q �= 0.

The NLSESCS are reduced from the AKNSESCS defined by

ϕj,x = U(λj , q, r)ϕj , ϕ′
j,x = U(λ′

j , q, r)ϕ′
j , j = 1, . . . , m, (3.6a)

φj,x = U(ζj , q, r)φj , j = 1, . . . , n, (3.6b)

qt = −i(qxx − 2q2r) +
m∑

j=1

[(
ϕ

(1)
j

)2
+
(
ϕ′

j

(1))2
]

+
n∑

j=1

(
φ

(1)
j

)2
, (3.6c)

rt = i(rxx − 2qr2) +
m∑

j=1

[(
ϕ

(2)
j

)2
+ (ϕ′

j

(2)
)2
]

+
n∑

j=1

(
φ

(2)
j

)2
, (3.6d )

where λ1, . . . , λn, λ
′
1, . . . , λ

′
n, ζ1, . . . , ζm are 2n + m distinct constants. The corresponding

Lax pair is

ψx = U(λ, q, r)ψ, ψt = V (λ, q, r)ψ +
m∑

j=1

[
H(ϕj )

λ − λj

+
H(ϕ′

j )

λ − λ′
j

]
ψ +

n∑
j=1

H(φj )

λ − ζj

ψ.

(3.7)

(1) Reductions to the NLS+ESCS. Let

r = q∗, λ′
j = −λ∗

j , ϕ′
j = ±S+ϕj , j = 1, . . . , m, (3.8a)
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Re ζj = 0, φ
(2)
j

∗ = φ
(1)
j ≡ wj, j = 1, . . . , n, (3.8b)

then equations (3.6) are reduced to the NLS+ESCS

ϕj,x = U(λj , q, q∗)ϕj , j = 1, . . . , m, (3.9a)

wj,x = ζjwj + qw∗
j , (Re ζj = 0), j = 1, . . . , n, (3.9b)

qt = i(2|q|2q − qxx) +
m∑

j=1

[(
ϕ

(1)
j

)2
+
(
ϕ

(2)
j

∗)2
]

+
n∑

j=1

w2
k . (3.9c)

And system (3.7) is reduced to the Lax pair for the NLS+ESCS

ψx = U(λ, q, q∗)ψ,

ψt = V (λ, q, q∗)ψ +
m∑

j=1

[
H(ϕj )

λ − λj

+
H(S+ϕj )

λ + λ∗
j

]
ψ +

n∑
j=1

H((wj ,w
∗
j )

T )

λ − ζj

ψ. (3.10)

(2) Reductions to the NLS−ESCS. Take n = 0 in (3.6) and let

r = −q∗, λ′
j = −λ∗

j , ϕ′
j = ±iS−ϕj , j = 1, . . . , m, (3.11)

then equations (3.6) with n = 0 are reduced to the NLS−ESCS

ϕj,x = U(λj , q,−q∗)ϕj , j = 1, . . . , m, (3.12a)

qt = i(−2|q|2q − qxx) +
m∑

j=1

[(
ϕ

(1)
j

)2 − (
ϕ

(2)∗
j

)2
]
. (3.12b)

Correspondingly, system (3.7) with n = 0 is reduced to the Lax pair for the NLS− SCS

ψx = U(λ, q,−q∗)ψ, ψt = V (λ, q,−q∗)ψ +
m∑

j=1

[
H(ϕj )

λ − λj

− H(S−ϕj )

λ + λ∗
j

]
ψ. (3.13)

We now reduce the Darboux transformations for the AKNSESCS to the NLSESCS. It is
easy to verify the following statements.

Lemma 3.2.

(1) Let f and g be two solutions of the NLS+ spectral problem ψx = U(λ, q, q∗)ψ with
λ = µ, ν respectively, and let C be a complex constant wrt x, then we have

σ(f, S+g)∗ = σ(S+f, g), σ (S+f, S+g)∗ = σ(f, g),

σ (f, S+f )∗ = σ(S+f, f ), σ (S+f, S+f )∗ = σ(f, f );

W0({C, f }, {C∗, S+f })∗ = W0({C, f }, {C∗, S+f }),

W1({C, f }, {C∗, S+f }; S+g)∗ = S+W1({C, f }, {C∗, S+f }; g),

W
(2)
2 ({C, f }, {C∗, S+f }; 0)∗ = W

(1)
2 ({C, f }, {C∗, S+f }; 0).

Moreover, if g satisfies g(2) = g(1)∗(⇒ Re ν = 0), then

W
(2)
1 ({C, f }, {C∗, S+f }; g)∗ = W

(1)
1 ({C, f }, {C∗, S+f }; g).



2450 Y Shao and Y Zeng

(2) Let f and g be two solutions of the NLS− spectral problem ψx = U(λ, q,−q∗)ψ with
λ = µ, ν respectively, and let C be a complex constant wrt x, then we have

σ(f, S−g)∗ = σ(S−f, g), σ (S−f, S−g)∗ = −σ(f, g),

σ (f, S−f )∗ = σ(S−f, f ), σ (S−f, S−f )∗ = −σ(f, f ),

W0({C, f }, {−C∗, S−f })∗ = W0({C, f }, {−C∗, S−f }),

W1({C, f }, {−C∗, S+f }; S−g)∗ = S−W1({C, f }, {−C∗, S−f }; g),

W
(2)
2 ({C, f }, {−C∗, S−f }; 0)∗ = −W

(1)
2 ({C, f }, {−C∗, S−f }; 0).

Using this lemma, we can reduce binary Darboux transformations for the AKNSESCS to
binary Darboux transformations for the NLSESCS.

(1) Darboux transformations for the NLS+ESCS. The binary Darboux transformation (2.6) for
the AKNSSCS is reduced to a binary Darboux transformation with an arbitrary function for
the NLS+ESCS as follows:

Proposition 3.1. Given a solution (q, ϕ1, . . . , ϕm,w1, . . . , wn) of the NLS+ESCS (3.9), let
c(t) be a real function satisfying ċ(t) � 0, and let f be a solution of the linear system (3.10)
with λ = ζn+1, Re ζn+1 = 0 and satisfy f (1) = f (2)∗. Define

ψ̄ = ψ − f

c(t) + σ(f, f )
σ (f,ψ), q̄ = q − (f (1))2

c(t) + σ(f, f )
, (3.14a)

ϕ̄j = ϕj − f

c(t) + σ(f, f )
σ (f, ϕj ), j = 1, . . . , m, (3.14b)

w̄j = wj − f (1)

c(t) + σ(f, f )
σ (f, (wj ,w

∗
j )

T ), j = 1, . . . , n, (3.14c)

w̄n+1 =
√

ċ(t)f (1)

c(t) + σ(f, f )
, (3.14d )

then the new variables ψ̄, q̄, ϕ̄1, . . . , ϕ̄m and w̄1, . . . , w̄n+1 satisfy system (3.10) with n replaced
by n + 1. Hence (q̄, ϕ̄1, . . . , ϕ̄n, w̄1, . . . , w̄m+1) is a solution of the NLS+ESCS (3.9) with n
replaced by n + 1. Moreover, we have

|q̄|2 = |q|2 − ∂2
x log[c(t) + σ(f, f )]. (3.15)

The twice repeated binary Darboux transformation for the AKNSESCS can be reduced
to a second binary Darboux transformation with an arbitrary function for the NLS+ESCS as
follows:

Proposition 3.2. Given a solution (q, ϕ1, . . . , ϕm,w1, . . . , wn) of the NLS+ESCS (3.9), let
c(t) be an arbitrary complex function, and f be a solution of the linear system (3.10) with
λ = λm+1, Re λm+1 �= 0. Let 	 = W0({c, f }, {c∗, S+f }), and define

ψ̄ = 	−1W1({c, f }, {c∗, S+f };ψ), (3.16a)

q̄ = q + 	−1W
(1)
2 ({c, f }, {c∗, S+f }; 0), (3.16b)

ϕ̄j = 	−1W1({c, f }, {c∗, S+f };ϕj ), j = 1, . . . , m (3.16c)
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w̄j = 	−1W−1
1 ({c, f }, {c∗, S+f }; (wj ,w

∗
j )

T ), j = 1, . . . , n, (3.16d )

ϕ̄m+1 =
√

ċ(c	)−1W1({c, f }, {c∗, S+f }; f ), (3.16e)

then the new variables ψ̄, q̄, ϕ̄1, . . . , ϕ̄m+1 and w̄1, . . . , w̄n satisfy system (3.10) with m
replaced by m + 1. Hence (q̄, ϕ̄1, . . . , ϕ̄n+1, w̄1, . . . , w̄m) is a solution of the NLS+ESCS
(3.9) with m replaced by m + 1. Moreover, we have

|q̄|2 = |q|2 − ∂2
x log 	. (3.17)

If we repeat Darboux transformation (3.14) N times and Darboux transformation (3.16)
M times, then we have a general multi-times repeated Darboux transformation with N+M

arbitrary functions as follows:

Proposition 3.3. Given a solution (q, ϕ1, . . . , ϕm,w1, . . . , wn) of the NLS+ESCS (3.9),
let fj be a solution of the linear system (3.10) with λ = ζn+j , Re ζn+j = 0, and satisfy
f

(1)
j = f

(2)∗
j , j = 1, . . . , N , and let gj be a solution of the linear system (3.10) with

λ = λm+j , Re λm+j �= 0, j = 1, . . . , M . Let cj (t) be an arbitrary real function satisfying
ċj (t) � 0, j = 1, . . . , N , and let dj (t) be an arbitrary complex function, j = 1, . . . , M .
Let Fj = {cj , fj },Gj = {dj , gj },G′

k = {d∗
k , S+gj }, and 	 = W0(F1, . . . , FN,G1,G

′
1, . . . ,

GM,G′
M), and define

ψ̄ = 	−1W1(F1, . . . , FN,G1,G
′
1, . . . ,GM,G′

M ;ψ), (3.18a)

q̄ = q + 	−1W
(1)
2 (F1, . . . , FN,G1,G

′
1, . . . ,GM,G′

M; 0), (3.18b)

ϕ̄j = 	−1W1(F1, . . . , FN,G1,G
′
1, . . . ,GM,G′

M ;ϕj ), j = 1, . . . , m, (3.18c)

ϕ̄m+j = √
ċj (cj	)−1W1(F1, . . . , FN,G1,G

′
1, . . . ,GM,G′

M ; gj ), j = 1, . . . ,M, (3.18d )

w̄j = 	−1W
(1)
1 (F1, . . . , FN,G1,G

′
1, . . . ,GM,G′

M ; (wj ,w
∗
j )

T ), j = 1, . . . , n, (3.18e)

w̄n+j =
√

ḋj (dj	)−1W1(F1, . . . , FN,G1,G
′
1, . . . ,GM,G′

M; fj ), j = 1, . . . , N, (3.18 f )

then the new variables ψ̄, q̄, ϕ̄1, . . . , ϕ̄m+M and w̄1, . . . , w̄n+N satisfy system (3.10) with m, n

replaced by m+M,n+N , respectively. Hence (q̄, ϕ̄1, . . . , ϕ̄m+M, w̄1, . . . , w̄n+N) is a solution
of the NLS+ESCS (3.9) with m, n replaced by m + M,n + N . Moreover, we have

|q̄|2 = |q|2 − ∂2
x log 	. (3.19)

(2) Darboux transformations for the NLS−ESCS. The binary Darboux transformation for the
AKNSESCS cannot be reduced to a Darboux transformation for the NLS−ESCS. But the
two-times Darboux transformation for the AKNSESCS can be reduced to a binary Darboux
transformation with an arbitrary function for the NLS−ESCS.

Proposition 3.4. Given a solution (q, ϕ1, . . . , ϕm) of the NLS−ESCS (3.12), let f be a solution
of the linear system (3.13) with λ = λm+1, Re λm+1 �= 0. Let c(t) be an arbitrary complex
function, 	 = W0({c, f }, {−c∗, S−f }), and define

ψ̄ = 	−1W1({c, f }, {−c∗, S−f };ψ), (3.20a)

q̄ = q + 	−1W
(1)
2 ({c, f }, {−c∗, S−f }; 0), (3.20b)

ϕ̄j = 	−1W1({c, f }, {−c∗, S−f };ϕj ), j = 1, . . . , m (3.20c)

ϕ̄n+1 =
√

ċ(c	)−1W1({c, f }, {−c∗, S−f }; f ), (3.20d )
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then the new variables ψ̄, q̄, ϕ̄1, . . . , ϕ̄m+1 satisfy system (3.13) with m replaced by m + 1,
Moreover, we have

|q̄|2 = |q|2 + ∂2
x log 	. (3.21)

Repeating the above Darboux transformation N times gives rise to a general N-times
repeated binary Darboux transformation with N arbitrary functions for the NLS−ESCS.

Proposition 3.5. Given a solution (q, ϕ1, . . . , ϕm) of the NLS− equations with sources (3.12),
let fj be a solution of the linear system (3.13) with λ = λm+j , Re λm+j �= 0, j = 1, . . . , N . Let
cj (t) be an arbitrary complex function, Fj = {cj , fj }, F ′

j = {−c∗
j , S−fj }, j = 1, . . . , N,	 =

W0 (F1, F
′
1, . . . , FN, F ′

N), and define

ψ̄ = 	−1W1(F1, F
′
1, . . . , FN, F ′

N ;ψ), (3.22a)

q̄ = q + 	−1W
(1)
2 (F1, F

′
1, . . . , FN, F ′

N ; 0), (3.22b)

ϕ̄j = 	−1W1(F1, F
′
1, . . . , FN, F ′

N ;ϕj ), j = 1, . . . , m (3.22c)

ϕ̄m+j = √
ċj (cj	)−1W1(F1, F

′
1, . . . , FN, F ′

N ; fj ), j = 1, . . . , N (3.22d )

then the new variables ψ̄, q̄, ϕ̄1, . . . , ϕ̄m+1 satisfy system (3.13) with m replaced by m + N ,
and hence (q̄, ϕ̄1, . . . , ϕ̄m+N) is a solution of the NLS+ESCS (3.12) with m replaced by m + N .
Moreover, we have

|q̄|2 = |q|2 + ∂2
x log 	. (3.23)

4. Solutions of the NLS equations with sources

This section is devoted to obtaining some examples of the solutions of the NLSESCS by
Darboux transformations and the analysis for these solutions. We use subscripts zR and zI to
indicate the real part and the imaginary part of a complex number z. For ∀z = |z| eiθ ∈ C with
θ ∈ (−π, π ], we define

√
z = √|z| eiθ/2.

4.1. Solutions of the NLS+ESCS

We only consider the NLS+ESCS (3.9) with m = 0. We start from the NLS+ESCS (i.e.,
m = n = 0)

qt = i(2|q|2q − qxx) (4.1)

and its solution

q = ρ e2iρ2t , (4.2)

where ρ ∈ R+ is a constant. We need to solve the linear system

ψx = U
(
λ, ρ e2iρ2t , ρ e−2iρ2t

)
ψ, ψt = V

(
λ, ρ e2iρ2t , ρ e−2iρ2t

)
ψ. (4.3)

The fundamental solution matrix for the linear system (4.4) is

� =
(

ρ eκ(x+2iλt)+iρ2t (κ + λ) e−κ(x+2iλt)+iρ2t

(κ + λ) eκ(x+2iλt)−iρ2t −ρ e−κ(x+2iλt)−iρ2t

)
, (4.4)

where κ = κ(λ) satisfies κ2 = λ2 + ρ2.
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4.1.1. Solutions of the NLS+ESCS with m = 0 and n = 1. The NLS+ESCS with m = 0 and
n = 1 reads

w1,x = i�w1 + qw∗
1, (4.5a)

qt = i(2|q|2q − qxx) + w2
1. (4.5b)

where � �= 0 is a real constant. Let f be a solution of system (4.3) with λ = i� and satisfy
f (1) = f (2)∗, and let c(t) be an arbitrary real function with ċ(t) � 0, then by proposition 3.3,
a solution to the equation is given by

q = ρ e2iρ2t −
(
f

(1)
1

)2

c(t) + σ(f, f )
, w1 =

√
ċ(t)f

(1)
1

c(t) + σ(f, f )
. (4.6)

Moreover, we have

|q|2 = ρ2 − ∂2
x log[c(t) + σ(f, f )]. (4.7)

For the two cases: ρ > |�| and ρ < |�|, formulae (4.6) will give two different classes of
solutions respectively: a dark one-soliton solution and a one-positon solution.

(1) Dark one-soliton solution and scattering property. We take ρ > |�| and let κ1 = κ(i�).
We choose κ =

√
λ2 + ρ2, then κ and

√
κ ± λ are analytic at λ = i�, and κ1 =

√
ρ2 − �2 > 0.

Taking into account that the equality ρ = √
κ − λ

√
κ + λ holds near λ = i�, we choose f as

f =
[
�

(√
κ − λ/ρ

0

)]
λ=i�

=
(√

κ − λ eκ(x+2iλt)+iρ2t

√
κ + λ eκ(x+2iλt)−iρ2t

)∣∣∣∣∣
λ=i�

=
(√

κ1 − i� eκ1(x−2�t)+iρ2t

√
κ1 + i� eκ1(x−2�t)−iρ2t

)
.

Then one finds that f (2) = f (1)∗. Calculation yields

σ(f, f ) = 1

2

∣∣∣∣f (1) ∂(i�)f
(1)

f (2) ∂(i�)f
(2)

∣∣∣∣ = ρ

2κ1
e2κ1(x−2�t).

Let c(t) = (2κ1)
−1ρ e2κ1(at+b) with a ∈ R+, b ∈ R being constants, then formulae (4.6) give a

dark one-soliton solution

q = ρ e2iρ2t − 2κ1(κ1 − i�) e2κ1(x−2�t)+2iρ2t

ρ(e2κ1(at+b) + e2κ1(x−2�t))
= 1 − e−4iθ e2ξ

1 + e2ξ
ρ e2iρ2t , (4.8a)

w1 =
√

a(κ1 − i�)

ρ

2κ1 eκ1(x−2�t)+κ1(at+b)+iρ2t

e2κ1(at+b) + e2κ1(x−2�t)
= 2

√
aκ1 eξ−iθ

1 + e2ξ
eiρ2t , (4.8b)

where

ξ = κ1[x − (2� + a)t − b], θ = 1

2
arcsin

�

ρ
.

By formula (4.7), one obtains

|q|2 = ρ2 − ∂2
x log(1 + e2ξ ) = ρ2 − κ2

1

cosh2 ξ
, (4.9)

which shows that |q|2 describes the propagation of a dark soliton on the constant
background ρ. The soliton is localized around ξ = 0, so the location of the soliton is
x(t) = (2� + a)t + b. and the soliton velocity is 2� + a. If a = 0, then w1 ≡ 0, and q defined
by (4.8) becomes a dark one-soliton solution [27] of the NLS+ equation (4.1).

We fix a solution of system (4.3) as

ψ0(x, t; λ) =
(

ρ eiρ2t

(κ + λ) e−iρ2t

)
eκ(x+2iλt). (4.10)
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Then a solution of the NLS+ spectral problem

ψx = U(λ, q, q∗)ψ (4.11)

with q defined by (4.8) is given by

ψ = ψ0 − f σ(f, ψ0)

c(t) + σ(f, f )
=

(
ρ eiρ2t

(κ + λ) e−iρ2t

)
eκ(x+2iλt) −

(√
κ1 − i� eiρ2t

√
κ1 + i� e−iρ2t

)

× κ1 e2ξ eκ(x+2iλt)

ρ(λ − i�)(1 + e2ξ )
×

∣∣∣∣√κ1 − i� ρ√
κ1 + i� κ + λ

∣∣∣∣
= (ρ2 + i�λ − κ1κ) e2ξ

ρ2(λ − i�)(1 + e2ξ )

(
ρ(κ1 − i�) eiρ2t

−(κ + λ)(κ1 + i�) e−iρ2t

)
eκ(x+2iλt). (4.12)

Based on formulae (4.8), we can analyse the asymptotic features of the dark one-soliton
solution. For fixed t, we have

q =
{

ρ e2iρ2t [1 + o(1)], x → −∞,

ρ ei(π−4θ) e2iρ2t [1 + o(1)], x → +∞,
(4.13)

w1 → 0, x → ±∞. (4.14)

It is easy to see that q belongs to the class of potentials satisfying the finite density boundary
condition [27]

q(x, t) = ρ eiα±(t)[1 + o(1)], x → ±∞, (4.15)

where α±(t) are real functions, and β ≡ 1
2 (α+(t) − α−(t)) is a real constant independent of t.

We now define the scattering data for this class of potentials in a similar way to [23].
First, we define u = q e−iα−(t), then u satisfies the standard finite density boundary

condition

u(x, t) =
{

ρ[1 + o(1)], x → −∞,

ρ e2iβ [1 + o(1)], x → +∞.
(4.16)

Next, we define transmission and reflection coefficients for the NLS+ spectral system

φx =
(−λ u

u∗ λ

)
φ. (4.17)

For u ≡ ρ, system (4.3) has two linearly independent solutions( ρ

κ+λ

1

)
eκx,

(−1
ρ

κ+λ

)
e−κx,

while for u ≡ ρ e2iβ , system (4.11) has two linearly independent solutions

Q(β)

( ρ

κ+λ

1

)
eκx, Q(β)

(−1
ρ

κ+λ

)
e−κx,

where Q(β) = diag(eiβ, e−iβ). We fix a Jost solution φ of system (4.11) by imposing the
asymptotic property

φ =
( ρ

κ+λ

1

)
eκx[1 + o(1)], x → −∞, (4.18)

while the transmission and reflection coefficients a(λ, t) and b(λ, t) are determined by the
asymptotic estimate

φ = a(λ, t)Q(β)

( ρ

κ+λ

1

)
eκx + b(λ, t)Q(β)

(−1
ρ

κ+λ

)
e−κx, x → +∞. (4.19)
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We can now calculate the scattering data for the dark one-soliton solution. In this case,
we have u = q e−iρ2t and β = π/2 − 2θ . Formula (4.12) implies the function ψ has the
asymptotic behaviour

ψ =
(

ρ eiρ2t

(κ + λ) e−iρ2t

)
eκ(x+2iλt)[1 + o(1)], x → −∞, (4.20)

ψ = ρ2 + i�λ − κ1κ

ρ2(λ − i�)

(
ρ(κ1 − i�) eiρ2t

−(κ + λ)(κ1 + i�) e−iρ2t

)
eκ(x+2iλt)[1 + o(1)], x → +∞. (4.21)

We now take the Jost solution

φ = Q(−ρ2t)(κ + λ)−1 e−2iκλtψ, (4.22)

then we have

φ = ρ2 + i�λ − κ1κ

iρ(λ − i�)
Q(π/2 − 2θ)

( ρ

κ+λ

1

)
eκx[1 + o(1)], x → +∞, (4.23)

which implies that

a(λ, t) = ρ2 + i�λ − κ1κ

iρ(λ − i�)
, b(λ, t) = 0. (4.24)

The dark one-soliton solution is a reflectionless potential.

(2) One-positon solution and super-reflectionless property. We take ρ < |�| and choose
κ = (sign λI ) i

√
−λ2 − ρ2, then κ is analytic at λ = i� and κ(i�) = ik1, where

k1 = (sign �)
√

�2 − ρ2 is a real constant. Choose a periodic solution of system (4.3) with
λ = i� as

f =
[
�

(
1

−1

)]
λ=i�

=
(

ρ eκ(x+2iλt)+iρ2t − (κ + λ) e−κ(x+2iλt)+iρ2t

(κ + λ) eκ(x+2iλt)−iρ2t + ρ e−κ(x+2iλt)−iρ2t

)∣∣∣∣∣
λ=i�

=
(

ρ ei(�+ρ2t) − i(k1 + �) e−i(�−ρ2t)

i(k1 + �) ei(�−ρ2t) + ρ e−i(�+ρ2t)

)
, (4.25)

where � = k1(x − 2�t). One finds f (2) = f (1)∗, and

(f (1))2 = 2�(k1 + �)[−k1�
−1 cos 2� + i(sin 2� − ρ�−1)] e2iρ2t ,

σ (f, f ) = 2�(k1 + �)
[
x − 2

(
k2

1�
−1 + �

)
t + ρ(2k1�)

−1 cos 2�
]
.

Choose c(t) = 2�(k1 + �)(at + b) with a ∈ R+, b ∈ R being constants, which implies that
ċ(t) � 0. Then formulae (4.6) give a one-positon solution

q = ρ e2iρ2t − (f (1))2

c(t) + σ(f, f )
=

[
ρ +

k1�
−1 cos 2� − i(sin 2� − ρ�−1)

γ + ρ(2k1�)−1 cos 2�

]
e2iρ2t , (4.26a)

w1 =
√

ċ(t)f (1)

c(t) + σ(f, f )
=

√
a

2

√
1 − k1�−1 ei� − i

√
1 + k1�−1 e−i�

γ + (2k1�)−1ρ cos 2�
eiρ2t , (4.26b)

where

γ = x +
[
a − 2

(
� + k2

1�
−1

)]
t + b.
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Formula (4.7) implies

|q|2 = ρ2 − ∂2
x log[γ + (2k1�)

−1ρ cos 2�] = ρ2 +
1 + ρ2�−2 + 2ρ�−1(k1γ cos 2� − sin 2�)

[γ + ρ(2k1�)−1 cos 2�]2
.

(4.27)

When ρ = a = 0, we have k1 = � and w1 ≡ 0, and formulae (4.26) degenerate to a solution
of the NLS+ equation (4.1)

q = − e−2i�(x−2�t)

x − 4�t + b
, (4.28)

which was given in [25].
A solution of the NLS+ spectral problem (4.11) with the potential q defined by (4.26) is

ψ = ψ0 − f σ(f, ψ0)

c(t) + σ(f, f )
=

(
ρ eiρ2t

(κ + λ) e−iρ2t

)
eκ(x+2iλt) −

(
[ρ ei� − i(k1 + �) e−i�] eiρ2t

[i(k1 + �) ei� + ρ e−i�] e−iρ2t

)

× eκ(x+2iλt)

4�(λ − i�)(k1 + �)[γ + (2k1�)−1ρ cos 2�]

∣∣∣∣ρ ei� − i(k1 + �) e−i� ρ

i(k1 + �) ei� + ρ e−i� κ + λ

∣∣∣∣ . (4.29)

Based on formulae (4.26) and (4.29), we can analyse the basic features of the one-positon
solution. Formulae (4.26) imply that for fixed t and x → ±∞, we have the asymptotic
estimate

q e−2iρ2t = ρ + [k1�
−1 cos 2� − i(sin 2� − ρ�−1)]x−1[1 + O(x−1)], (4.30)

w1e−iρ2t =
√

a/2
(√

1 − k1�−1 ei� − i
√

1 + k1�−1 e−i�
)
x−1[1 + O(x−1)], (4.31)

for all ρ ∈ R+. However, the asymptotic behaviour of |q|2 for ρ = 0 is different from that for
ρ > 0. Actually, for ρ = 0, we have

|q|2 = x−2[1 + O(x−1)],

while for ρ > 0, we have

|q|2 = ρ2 + 2k1ρ�−1x−1 cos 2�[1 + O(x−1)]. (4.32)

Compared to the dark one-soliton solution, the one-positon solution converges to its
background slowly.

As a function of x, the potential q and the source w1 share the same first-order pole
x = x0(t), which is implicitly determined by the equation

2k1�[x0 +
(
a − 2� − 2k2

1�
−1

)
t + b] = ρ cos(2k1x0 − 4k1�t).

The uniqueness of the solution x0 can easily be proved. Let γ0(t) = x0(t) +
(
a − 2� −

2k2
1�

−1
)
t + b, then γ0 satisfies

2k1�γ0 = ρ cos(2k1[γ0 − (
a − 2k2

1�
−1

)
t − b]).

This equation implies that γ0(t) is a periodic function of t with period �π
/(

2k3
1

)
. We define

the velocity of a positon as the velocity of its pole. From this definition, the velocity of the
positon is

v(t) = v(t + T ) = ẋ0(t) = [
2� + 2k2

1�
−1 − a + γ̇0(t)

]
,

where T = π
/(

2k3
1

)
, and the average speed of the positon is

1

T

∫ T

0
v(t) dt = (

2� + 2k2
1�

−1 − a
)
.
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Figure 1. The one-positon solution of the NLS+ESCS (4.5) with � = 5. The data are ρ = 3, a = 2
and b = 1. The plots are taken at t = 0. The two upper graphs show the real and imaginary
parts of q respectively while the two lower graphs show the modulus of q and the real part of w1
respectively.

In figure 1, we plot a one-positon solution of the NLS+ESCS (4.5).
We now calculate the scattering data for the one-positon solution (4.5). In this case,

u = q e−iρ2t and β = 0. Formula (4.29) implies the asymptotic behaviour of the function ψ

ψ =
(

ρ eiρ2t

(κ + λ) e−iρ2t

)
eκ(x+2iλt)[1 + o(1)], x → ±∞.

We take the Jost solution as

φ = Q(−ρ2t)(κ + λ)−1 e−2iκλtψ,

then we have

φ →
( ρ

κ+λ

1

)
eκx, x → ±∞, a(λ, t) = 1, b(λ, t) = 0.

Potentials with reflection coefficient b = 0 and transmission coefficient a = 1 are called
superreflectionless or supertransparent potentials [23]. By this definition, the one-positon
solution is superreflectionless.

In [23], positons are defined as long-range analogues of solitons and slowly decreasing,
oscillating solutions of nonlinear integrable equations. If we stick to the property of slowly
decreasing, the potential q defined by (4.26) should not be called a one-positon solution unless
ρ = 0. However, we see that other properties such as being the long-range analogue of a
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soliton and the super-reflectionless property are still valid. Thus it is reasonable to extend
the definition of positons as: long-range analogues of solitons, slowly converging, oscillating
solutions of nonlinear integrable equations. According to this extended definition, solution
(4.26) is a positon solution.

4.1.2. Solutions of the NLS+ equation with sources with m = 0 and n = 2. The NLS+

equation with sources with m = 0 and n = 2 reads

w1,x = i�1w1 + qw∗
1, w2,x = i�2w2 + qw∗

2, (4.33a)

qt = i(2|q|2q − qxx) + w2
1 + w2

2, (4.33b)

where �1 and �2 are two distinct real constants. For j = 1, 2, let fj be a solution of system (4.4)
with λ = i�j and satisfy f

(1)
j = f

(2)∗
j , and let cj (t) be an arbitrary function with ċj (t) � 0.

Then by proposition 3.3, a solution of equations (4.33a) is given by

q = ρ e2iρ2t +
2σ(f1, f2)f

(1)
1 f

(1)
2 − (c1(t) + σ(f2, f2))(f

(1)
2 )2 − (c2(t) + σ(f1, f1))(f

(1)
1 )2

(c1(t) + σ(f1, f1))(c2(t) + σ(f2, f2)) − σ(f1, f2)2

(4.34a)

w1 =
√

ċ1(t)
[
(c2(t) + σ(f2, f2))f

(1)
1 − σ(f1, f2)f

(1)
2

]
(c1(t) + σ(f1, f1))(c2(t) + σ(f2, f2)) − σ(f1, f2)2

, (4.34b)

w2 =
√

ċ2(t)
[
(c1(t) + σ(f1, f1))f

(1)
2 − σ(f1, f2)f

(1)
1

]
(c1(t) + σ(f1, f1))(c2(t) + σ(f2, f2)) − σ(f1, f2)2

. (4.34c)

Moreover, we have

|q|2 = ρ2 − ∂2
x log[(c1(t) + σ(f1, f1))(c2(t) + σ(f2, f2)) − σ(f1, f2)

2]. (4.35)

For simplicity, we assume |�1| > |�2|. According to the three cases for ρ: (i) ρ > |�j |, j =
1, 2, (ii) ρ < |�j |, j = 1, 2 and (iii) |�1| > ρ > |�2|, formulae (4.34) will give three classes of
solutions respectively: dark two-soliton solution, two-positon solution and one-soliton–one-
positon solution.

(1) Dark two-soliton solution. For j = 1, 2, we take ρ > |�j |, and choose

fj =
[
�

(√
κ − λ/ρ

0

)]
λ=i�j

=
(√

κj − i�j eκj (x−2�j t)+iρ2t√
κj + i�j eκj (x−2�j t)−iρ2t

)
,

where

κ =
√

λ2 + ρ2 and κj =
√

ρ2 − �2
j .

Let

cj (t) = ρ

2κj

e2κj (aj t+bj ), θj = 1

2
arcsin

�j

ρ
, j = 1, 2,

where aj ∈ R+, bj ∈ R are constants, then one finds

σ(fj , fj ) = ρ

2κj

e2κj (x−2�j t), j = 1, 2,

σ (f1, f2) = ρ sin(θ1 − θ2)

�1 − �2
eκ1(x−2�1t)+κ2(x−2�2t).
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Formulae (4.34) yield a dark two-soliton solution

q = 1

	

∣∣∣∣∣∣∣∣
ρ

2κ1
(1 + e2ξ1)

ρ sin(θ1−θ2)

�1−�2
eξ1+ξ2

√
ρ eξ1+i(ρ2t−θ1)

ρ sin(θ1−θ2)

�1−�2
eξ1+ξ2 ρ

2κ2
(1 + e2ξ2)

√
ρ eξ2+i(ρ2t−θ2)

√
ρ eξ1+i(ρ2t−θ1)

√
ρ eξ2+i(ρ2t−θ2) ρ e2iρ2t

∣∣∣∣∣∣∣∣
= ρ e2iρ2t

	

∣∣∣∣∣∣∣∣
ρ

2κ1
(1 + e2ξ1)

ρ sin(θ1−θ2)

�1−�2
eξ1+ξ2 eξ1−iθ1

ρ sin(θ1−θ2)

�1−�2
eξ1+ξ2 ρ

2κ2
(1 + e2ξ2) eξ2−iθ2

eξ1−iθ1 eξ2−iθ2 1

∣∣∣∣∣∣∣∣ , (4.36a)

w1 =
√

a1ρ eiρ2t

	

∣∣∣∣∣
ρ

2κ2
(1 + e2ξ2)

ρ sin(θ1−θ2)

�1−�2
eξ1+ξ2

eξ2−iθ2 eξ1−iθ1

∣∣∣∣∣ , (4.36b)

w2 =
√

a2ρ eiρ2t

	

∣∣∣∣∣
ρ

2κ1
(1 + e2ξ1)

ρ sin(θ1−θ2)

�1−�2
eξ1+ξ2

eξ1−iθ1 eξ2−iθ2

∣∣∣∣∣ , (4.36c)

where

ξj = κj [x − (2�j + aj )t − bj ], j = 1, 2,

and

	 =
∣∣∣∣∣

ρ

2κ1
(1 + e2ξ1)

ρ sin(θ1−θ2)

�1−�2
eξ1+ξ2

ρ sin(θ1−θ2)

�1−�2
eξ1+ξ2 ρ

2κ2
(1 + e2ξ2)

∣∣∣∣∣ .
(2) Two-positon solutions and positon–positon interaction. For j = 1, 2, we take ρ < |�j |,
and choose

fj =
[
�

(
1

−1

)]
λ=i�j

=
(

[ρ ei�j − i(kj + �j ) e−i�j ] eiρ2t

[i(kj + �j ) ei�j + ρ e−i�j ] e−iρ2t

)
,

where

κ = (sign λI ) i
√

−λ2 − ρ2, and �j = kj (x − 2�j t), kj = (sign �j )

√
�2

j − ρ2.

Let

cj (t) = 2�j (kj + �j )(aj t + bj ), γj = x +
[
aj − 2

(
�j + k2

j �
−1
j

)]
t + bj , j = 1, 2,

where aj ∈ R+, bj ∈ R are constants. Then one finds

cj (t) + σ(fj , fj ) = 2�j (kj + �j )[γj + ρ(2kj�j )
−1 cos 2�j ], j = 1, 2,

σ (f1, f2) = ρ

(
1 +

k1 − k2

�1 − �2

)
cos(�1 + �2) − [ρ2 − (k1 + �1)(k2 + �2)]

sin(�1 − �2)

�1 − �2
.

Formulae (4.34) give a two-positon solution

q = ρ e2iρ2t +
2f

(1)
1 f

(1)
2 σ(f1, f2) − 2�2(k2 + �2)�2

(
f

(1)
1

)2 − 2�1(k1 + �1)�1
(
f

(1)
2

)2

4�1�2(k1 + �1)(k2 + �2)�1�2 − σ(f1, f2)2
, (4.37a)

w1 =
√

2a1�1(k1 + �1)
[
2�2(k2 + �2)�2f

(1)
1 − σ(f1, f2)f

(1)
2

]
4(k1 + �1)(k2 + �2)�1�2 − σ(f1, f2)2

, (4.37b)
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w2 =
√

2a2�2(k2 + �2)
[
2�2(k1 + �1)�1f

(1)
2 − σ(f1, f2)f

(1)
1

]
4(k1 + �1)(k2 + �2)�1�2 − σ(f1, f2)2

, (4.37c)

where

�j = γj + ρ(2kj�j )
−1 cos 2�j, j = 1, 2.

Assume that 2�1 + 2k2
1�

−1
1 − a1 �= 2�2

2 + 2k2
2�

−1
2 − a2. Fixing γ1 and letting t → ∞ (which

implies γ2 → ∞), we obtain the asymptotic estimate

q = ρ e2iρ2t − k1�
−1
1 cos 2�1 − i

(
sin 2�1 − ρ�−1

1

)
γ1 + (2k1�1)−1ρ cos 2�1

e2iρ2t [1 + O(t−1)], (4.38a)

w1 =
√

a1

2

√
1 − k1�

−1
1 ei�1 − i

√
1 + k1�

−1
1 e−i�1

γ1 + (2k1�1)−1ρ cos 2�1
eiρ2t [1 + O(t−1)], w2 = O(t−1).

(4.38b)

Conversely, if we fix γ2 and let t → ∞, then we obtain

q = ρ e2iρ2t − k2�
−1
2 cos 2�2 − i

(
sin 2�2 − ρ�−1

2

)
γ2 + (2k2�2)−1ρ cos 2�2

e2iρ2t [1 + O(t−1)], (4.39a)

w1 = O(t−1), w2 =
√

a2

2

√
1 − k2�

−1
2 ei�2 − i

√
1 + k2�

−1
2 e−i�2

γ2 + (2k2�2)−1ρ cos 2�2
eiρ2t [1 + O(t−1)].

(4.39b)

Thus we have proved that the two-positon solution decays into two positons asymptotically as
t → ∞, and the collision of the two positons is completely insensitive. Even the additional
phase shifts in the collision of two dark solitons are absent here.

(3) One-soliton–one-positon solution and soliton–positon interaction. We let ρ satisfy
|�1| < ρ < |�2|, and choose

f1 =
[
�

(√
κ − λ/ρ

0

)]
λ=i�1

=
(√

κ1 − i�1eκ1(x−2�1t)+iρ2t

√
κ1 + i�1eκ1(x−2�1t)−iρ2t

)
= √

ρ eκ1(x−2�1t)

(
ei(ρ2t−θ1)

e−i(ρ2t−θ1)

)
,

where

κ =
√

λ2 + ρ2, κ1 =
√

ρ2 − �2
1, θ1 = 1

2
arcsin

�1

ρ
,

and choose

f2 =
[
�

(
1

−1

)]
λ=i�2

=
(

[ρ ei�2 − i(k2 + �2) e−i�2 ] eiρ2t

[i(k2 + �2) ei�2 + ρ e−i�2 ] e−iρ2t

)
,

where

κ = (sign Im λ) i
√

−λ2 − ρ2, �2 = k2(x − 2�2t), k2 = (sign �2)

√
�2

2 − ρ2.

Let

c1(t) = ρ

2κ1
e2κ1(a1t+b1), ξ1 = κ1[x − (2�1 + a1)t − b1],

c2(t) = 2�2(k2 + �2)(a2t + b2), γ2 = x +
[
a2 − 2

(
�2 + k2

2�
−1
2

)]
t + b2,
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where aj ∈ R+, bj ∈ R, j = 1, 2, are constants. Then one finds

c1(t) + σ(f1, f1) = ρ

2κ1
e2κ1(a1t+b1)(1 + e2ξ1),

c2(t) + σ(f2, f2) = 2�2(k2 + �2)[γ2 + (2k2�2)
−1ρ cos 2�2],

σ (f1, f2) =
√

ρ eκ1(x−2�1t)

�2 − �1
[(k2 + �2) cos(θ1 − �2) − ρ sin(θ1 + �2)].

Formulae (4.34) give a one-soliton–one-positon solution

q = e2iρ2t

[
ρ +

2
√

ρ e2ξ1−iθ1AB − 2�2(k2 + �2)ρ e2(ξ1−iθ1)�2 − ρ(2κ1)
−1(1 + e2ξ1)A2

ρκ−1
1 �2(k2 + �2)(1 + e2ξ1)�2 − e2ξ1B2

]
(4.40a)

w1 =
√

ρa1[2�2(k2 + �2)
√

ρ eξ1−iθ1�2 − eξ1AB] eiρ2t

ρκ−1
1 �2(k2 + �2)(1 + e2ξ1)�2 − e2ξ1B2

(4.40b)

w2 =
√

2a2�2(k2 + �2)[ρ(2κ1)
−1(1 + e2ξ1)A − √

ρ e2ξ1−iθ1B] eiρ2t

ρκ−1
1 �2(k2 + �2)(1 + e2ξ1)�2 − e2ξ1B2

(4.40c)

where

�2 = γ2 + ρ(2k2�2)
−1 cos 2�2, A = ρ ei�2 − i(k2 + �2) e−i�2 ,

B =
√

ρ

�2 − �1
[(k2 + �2) cos(θ1 − �2) − ρ sin(θ1 + �2)].

Formula (4.35) implies that

|q|2 = ρ2 − ∂2
x log

[
ρκ−1

1 �2(k2 + �2)(1 + e2ξ1)�2 − e2ξ1B2
]
. (4.41)

It is easy to see that

κ−1
1 ξ1 − γ2 = [

2(�2 + k2
2�

−1
2 − �1) − a1 − a2

]
t − b1 − b2.

Assume

2
(
�2 + k2

2�
−1
2 − �1

) − a1 − a2 > 0.

We now fix γ2, and let t → −∞ (which implies ξ1 → −∞), then we obtain the estimate

q = ρ e2iρ2t +
k2�

−1
2 cos 2�2 − i(sin 2�2 − ρ�−1)

γ2 + (2k2�2)−1ρ cos 2�2
e2iρ2t [1 + O(e−2|ξ1|)], (4.42a)

w1 = O(eξ1), w2 =
√

a2

2

√
1 − k2�

−1
2 ei�2 − i

√
1 + k2�

−1
2 e−i�2

γ2 + (2k2�2)−1ρ cos 2�2
eiρ2t [1 + O(e−2|ξ1|)],

(4.42b)

and

|q|2 = ρ2 − ∂2
x log[γ2 + ρ(2k2�2)

−1 cos 2�2][1 + O(e−2|ξ1|)]. (4.42c)

Let t → +∞, then we obtain the estimate (for simplicity, we only give the estimate for |q|2)

|q|2 = ρ2 − ∂2
x log[γ2 + δ1 + ρ(2k2�2)

−1 cos 2(�2 + δ2)][1 + O(e−2|ξ1|)],

where

δ1 = − κ1

�2(�2 − �1)
, δ2 = 1

2
arcsin

2κ1k2(�1�2 − ρ2)

ρ2(�2 − �1)2
.
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Figure 2. The one-soliton–one-positon solution of the NLS+ESCS (4.33a) with �1 = 1 and
�2 = 2. The data are ρ = √

2 and a1 = a2 = b1 = b2 = 1. The two graphs show the modulus of
q at t = −15 (left) and t = 15 (right) respectively.

If we fix ξ1 and let t → ±∞ (which implies γ2 → ±∞), then we have the asymptotic estimate

q = ρ e2iρ2t − 1 + e−4iθ1

1 + e2ξ1
e2ξ1+2iρ2t [1 + O(t−1)], (4.43a)

w1 = 2
√

a1κ1 eξ1−iθ1

1 + e2ξ1
eiρ2t [1 + O(t−1)], w2 = O(t−1). (4.43b)

Thus we have proved that the one-soliton–one-positon solution decays asymptotically into a
dark soliton and a positon for large t. The dark soliton recovers completely after the collision
with a positon, in other words, a positon is totally transparent to a dark soliton. However,
the positon gains phase shifts when colliding with the dark soliton. In figure 2, we plot the
one-soliton–one-positon solution.

4.1.3. Solutions of the NLS+ESCS with m = 0 and n = N . The NLS+ESCS with m = 0 and
n = N reads

wj,x = i�jwj + qw∗
j , j = 1, . . . , N, (4.44a)

qt = i(2|q|2q − qxx) +
N∑

j=1

w2
j , (4.44b)

where �j �= 0, j = 1, . . . , N are N distinct real constants. For j = 1, . . . , N , let fj be a
solution of the system (4.4) with λ = i�j and satisfy f

(1)
j = f

(2)∗
j , and let cj (t) be an arbitrary

real function satisfying ċj (t) � 0. Then by proposition 3.3, a solution of equations (4.44) is
given by

q = ρ e2iρ2t +
	2

	0
, wj =

√
ċj (t)	1j

	0
, j = 1, . . . , N, (4.45)

where

	0 = W0({c1, f1}, . . . , {cN, fN }), 	2 = W
(1)
2 ({c1, f1}, . . . , {cN, fN }; 0),

	1j = W
(1)
1 ({c1, f1}, . . . , {cj−1, fj−1}, {cj+1, fj+1}, . . . , {cN, fN }; fj ).

Moreover, we have

|q|2 = ρ2 − ∂2
x log 	0. (4.46)
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For simplicity, we assume |�1| > · · · > |�N |. Then according to the different choice of ρ, we
can obtain different classes of solutions.

(1) Multi-soliton solutions. We take ρ > |�j |, j = 1, . . . , N , and choose

cj (t) = ρ

2κj

e2κj (aj t+bj ),

fj =
[
�

(√
κ − λ/ρ

0

)]
λ=i�j

=
(√

κj − i�j eκj (x−2�j t)+iρ2t√
κj + i�j eκj (x−2�j t)−iρ2t

)
,

where

κ =
√

λ2 + ρ2, κj =
√

ρ2 − �2
j , aj ∈ R+ and bj ∈ R,

then formulae (4.45) give the dark N-soliton solution.

(2) Multi-positon solutions. We take ρ < |�j |, j = 1, . . . , N , and choose

cj (t) = 2�j (kj + �j )(aj t + bj ),

fj =
[
�

(
1

−1

)]
λ=i�j

=
(

[ρ ei�j − i(kj + �j ) e−i�j ] eiρ2t

[i(kj + �j ) ei�j + ρ e−i�j ] e−iρ2t

)
,

where

κ = (sign Im λ) i
√

−λ2 − ρ2, kj = (sign �j )

√
�2

j − ρ2,

aj ∈ R+ and bj ∈ R,

then formulae (4.45) give the N-positon solution.

(3) Multi-soliton–multi-positon solutions. We let ρ satisfy |�N1 | > ρ > |�N1+1|, where
1 � N1 � N − 1, and choose

cj (t) = ρ

2κj

e2κj (aj t+bj ), fj =
[
�

(√
κ − λ/ρ

0

)]
λ=i�j

, j = 1, . . . , N1,

where

κ =
√

λ2 + ρ2 and κj =
√

ρ2 − �2
j ,

and

cj (t) = 2�j (kj + �j )(aj t + bj ), fj =
[
�

(
1

−1

)]
λ=i�j

, j = N1 + 1, . . . , N,

where

κ = (sign Im λ) i
√

−λ2 − ρ2 and kj = (sign �j )

√
�2

j − ρ2.

Here aj ∈ R+ and bj ∈ R for j = 1, . . . , N . Then formulae (4.45) give the N1-soliton–
N2-positon solution (N2 = N − N1).
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4.2. Solutions of the NLS−ESCS

We start from the NLS− equation without sources

qt = −i(2|q|2q + qxx), (4.47)

and its solution

q = ρ e−2iρ2t . (4.48)

We need to solve the linear system

ψx = U(λ, ρ e−2iρ2t ,−ρ e2iρ2t )ψ, ψt = V (λ, ρ e−2iρ2t ,−ρ e2iρ2t )ψ. (4.49)

The fundamental solution matrix for the linear system (4.49) is

� =
(

(κ + λ) eκ(x+2iλt)−iρ2t −ρ e−κ(x+2iλt)−iρ2t

−ρ eκ(x+2iλt)+iρ2t (κ + λ) e−κ(x+2iλt)+iρ2t

)
, (4.50)

where κ = κ(λ) satisfies κ2 = λ2 − ρ2.

4.2.1. Solutions of the NLS−ESCS with n = 1. The NLS−ESCS with n = 1 reads

ϕ1,x = U(λ1, q,−q∗)ϕ1, (4.51a)

qt = −i(2|q|2q + qxx) +
(
ϕ

(1)
1

)2 − (
ϕ

(2)∗
1

)2
, (4.51b)

where λ1 = λ1R + iλ1I is a complex constant with λ1R > 0, λ1I �= 0. Let f be a solution of
system (4.49) with λ = λ1, c(t) be an arbitrary complex function, then by proposition 3.4, a
solution of equations (4.51) is given by

q = ρ e−2iρ2t +
	2

	0
, ϕ1 =

√
ċ(t)

	0

(
	

(1)
1

	
(2)
1

)
, (4.52)

where

	0 =
∣∣∣∣∣c(t) + σ(f, f ) −|f (1)|2+|f (2)|2

4λ1R

−|f (1)|2+|f (2)|2
4λ1R

−c(t)∗ − σ(f, f )∗

∣∣∣∣∣ = −|c(t) + σ(f, f )|2 −
( |f (1)|2 + |f (2)|2

4λ1R

)2

,

	
(1)
1 =

∣∣∣∣∣−c(t)∗ − σ(f, f )∗ − |f (1)|2+|f (2)|2
4λ1R

−f (2)∗ f (1)

∣∣∣∣∣ , 	
(2)
1 =

∣∣∣∣∣−c(t)∗ − σ(f, f )∗ − |f (1)|2+|f (2)|2
4λ1R

f (1)∗ f (2)

∣∣∣∣∣ ,

	2 =

∣∣∣∣∣∣∣
c(t) + σ(f, f ) −|f (1)|2+|f (2)|2

4λ1R
f (1)

−|f (1)|2+|f (2)|2
4λ1R

−c(t)∗ − σ(f, f )∗ −f (2)∗

f (1) −f (2)∗ 0

∣∣∣∣∣∣∣ .
Moreover, we have

|q|2 = ρ2 + ∂2
x log 	0. (4.53)

Topological deformation of the bright one-soliton. We choose f as

f =
[
�

(
1
0

)]
λ=λ1

=
(

(κ1 + λ1) e−iρ2t

−ρ eiρ2t

)
eκ1(x+2iλ1t),
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where κ1 = κ(λ1). Here, we choose κ = κ(λ) = (sign λI )
√

λ2 − ρ2 for � defined by (4.50),
then κ is analytic at λ = λ1. Furthermore, under this choice of κ , we have limρ→0 κ = λ.
Calculation yields

σ(f, f ) = ρ(κ1 + λ1)

2κ1
e2κ1(x+2iλ1t), |f (1)|2 = |κ1 + λ1|2 e2(κ1Rx−2λ1I t),

|f (2)|2 = ρ2 e2(κ1Rx−2λ1I t).

We choose c(t) = (2κ1)
−1(κ1 +λ1) e2(at+b), where a and b are two arbitrary complex numbers,

then formulae (4.52) give the topological deformation of the bright one-soliton solution

q =
ρ +

ρ2(κ1+λ1)

2κ1
e−2iη − |κ1+λ1|2(κ1+λ1)

2κ∗
1

e2iη + ρ(κ1+λ1)

2

(
ρ2

κ1
+ |κ1+λ1|2+ρ2

λ1R
− |κ1+λ1|2

κ∗
1

)
e2ξ

|κ1+λ1|2
4|κ1|2 (e−2ξ + 2ρ cos 2η + ρ2 e2ξ ) +

( |κ1+λ1|2+ρ2

4λ1R

)2
e2ξ

 e−2iρ2t ,

(4.54a)

ϕ
(1)
1 =

√
a(κ1 + λ1)

κ1
·

|κ1+λ1|2
2κ∗

1
(e−ξ+iη + ρ eξ−iη) − ρ(|κ1+λ1|2+ρ2)

4λ1R
eξ−iη

|κ1+λ1|2
4|κ1|2 (e−2ξ + 2ρ cos 2η + ρ2 e2ξ ) +

( |κ1+λ1|2+ρ2

4λ1R

)2
e2ξ

e−iρ2t , (4.54b)

ϕ
(2)
1 =

√
a(κ1 + λ1)

κ1
·

−ρ(κ∗
1 +λ∗

1)

2κ∗
1

(e−ξ+iη + ρ eξ−iη) − (κ∗
1 +λ∗

1)(|κ1+λ1|2+ρ2)

4λ1R
eξ−iη

|κ1+λ1|2
4|κ1|2 (e−2ξ + 2ρ cos 2η + ρ2 e2ξ ) +

( |κ1+λ1|2+ρ2

4λ1R

)2
e2ξ

eiρ2t , (4.54c)

where

ξ = κ1Rx − (2λ1I + aR)t − bR, η = κ1I x + (2λ1R − aI )t − bI .

Formula (4.53) implies that

|q|2 = ρ2 + ∂2
x log

[
4λ2

1R|κ1 + λ1|2(e−2ξ + 2ρ cos 2η + ρ2 e2ξ ) + |κ1|2(|κ1 + λ1|2 + ρ2)2 e2ξ
]
.

When ρ = 0, we have κ1 = λ1 and the solution given by (4.54) corresponds to the bright
one-soliton solution

q = −2λ1R e2iη0

cosh 2ξ0
, ϕ1 =

√
2aλ1R

cosh 2ξ0

(
e−ξ0+iη0

−eξ0−iη0

)
,

where

ξ0 = λ1Rx − (2λ1I + aR)t − bR + log(|λ1|/
√

λ1R), η0 = λ1I + (2λ1R − aI )t − bI + arg λ1.

The topological deformation of the bright one-soliton solution for the NLS− equation was
already known. Here, we have given its correspondence for the NLS−ESCS.

In figure 3, we plot the topological deformation of the bright one-soliton solution.

4.2.2. Solutions of the NLS−ESCS with n = N . The NLS−ESCS with n = N reads

ϕj,x = U(λj , q,−q∗)ϕj , j = 1, . . . , N, (4.55a)

qt = −i(2|q|2q + qxx) +
(
ϕ

(1)
1

)2 − (
ϕ

(2)∗
1

)2
, (4.55b)

where λj = λjR + iλjI are distinct complex constants with λjR > 0, λjI �= 0. For
j = 1, . . . , N , let

Fj = {cj , fj }, F ′
j = {−c∗

j , S−fj }, cj (t) = κj + λj

2κj

eaj t+bj ,

fj =
[
�

(
1
0

)]
λ=λj

, κj = (sign λjI )

√
λ2

j − ρ2,
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Figure 3. The topological deformation of the bright one-soliton solution of the NLS−ESCS (4.51)
with λ1 = 2 + i. The data are ρ = √

6 and a1 = a2 = b1 = b2 = 1. The two graphs show the
modulus of q (left) and the real part of φ

(1)
1 (right) at t = 0.

then the topological deformation of the bright N-soliton solution of equations (4.55) is given
by

q = ρ e−2iρ2t +
	2

	0
, ϕj =

√
ċj (t)

	0

(
	

(1)
1j

	
(2)
1j

)
, j = 1, . . . , N,

where

	0 = W0(F1, F
′
1, . . . , FN, F ′

N), 	2 = W
(0)
2 (F1, F

′
1, . . . , FN, F ′

N ; 0),

	
(l)
1j = W

(l)
1 (F1, F

′
1, . . . , Fj−1, F

′
j−1, F

′
j , Fj+1, F

′
j+1, . . . , FN, F ′

N ; fj ),

l = 1, 2, j = 1, . . . , N.
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